Extracellular matrix-derived scaffolds provide an efficient platform for the generation of organ-like structures. Successful development of testicular organoids (TOs) with the capability of supporting complete spermatogenesis has not been reported yet. Here, we have developed an optimized method for the decellularization of ram testicular tissue fragments. Our findings showed that testicular fragments treated with a serial combination of Triton X-100 and SDS in PBS for 48 h resulted in the efficient removal of cellular materials and retention of the extracellular matrix (ECM) components. In order to fabricate testis-derived scaffolds (TDSs), the testicular ECM (T-ECM) was digested in acid/pepsin, followed by neutralization of pre-gel solution to form a hydrogel. Then, the hydrogels were freeze-dried and cross-linked using a chemical method. To reach the optimal concentration for the T-ECM in the fabrication of TDSs, the scaffold properties including porosity, pore size, swelling behavior, and degradation were evaluated. Our study suggested that 25 mg ml-1 of the T-ECM is the best concentration for the fabrication of macroporous TDSs for demonstrating lower pore size, homogeneously distributed pores, and a higher swelling ratio. Furthermore, inoculation of neonatal mouse testicular cells onto TDSs resulted in the generation of multicellular TOs in which the differentiation of spermatogonial cells into post-meiotic cells was confirmed. Hormonal analysis of TDSs revealed the functionality of TOs in the secretion of testosterone and inhibin B. The current study also demonstrated that macroporous TDSs could provide a novel platform for testicular tissue engineering and in vitro spermatogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8bm01001cDOI Listing

Publication Analysis

Top Keywords

platform generation
8
mouse testicular
8
testicular organoids
8
testicular tissue
8
pore size
8
macroporous tdss
8
testicular
7
tdss
6
testis-derived macroporous
4
macroporous scaffold
4

Similar Publications

Integration of artificial intelligence (AI) into radiology practice can create opportunities to improve diagnostic accuracy, workflow efficiency, and patient outcomes. Integration demands the ability to seamlessly incorporate AI-derived measurements into radiology reports. Common data elements (CDEs) define standardized, interoperable units of information.

View Article and Find Full Text PDF

TNIP1 Impacts Prognosis by Modulating the Immune Microenvironment in BRCA.

Biochem Genet

January 2025

Department of Rheumatology and Immunology, Jingmen People's Hospital, JingChu University of Technology Affiliated Jingmen People's Hospital, No.39 Xiangshan Road Dongbao Zone, Jingmen, 448000, China.

Breast invasive carcinoma (BRCA) affects women worldwide, and despite advancements in diagnosis, prevention, and treatment, outcomes remain suboptimal. TNIP1, a novel target involved in multiple immune signaling pathways, influences tumor development and survival. However, the connection between BRCA and TNIP1 remains unclear.

View Article and Find Full Text PDF

A genome-wide atlas of human cell morphology.

Nat Methods

January 2025

Broad Institute of MIT and Harvard, Cambridge, MA, USA.

A key challenge of the modern genomics era is developing empirical data-driven representations of gene function. Here we present the first unbiased morphology-based genome-wide perturbation atlas in human cells, containing three genome-wide genotype-phenotype maps comprising CRISPR-Cas9-based knockouts of >20,000 genes in >30 million cells. Our optical pooled cell profiling platform (PERISCOPE) combines a destainable high-dimensional phenotyping panel (based on Cell Painting) with optical sequencing of molecular barcodes and a scalable open-source analysis pipeline to facilitate massively parallel screening of pooled perturbation libraries.

View Article and Find Full Text PDF

Using artificial intelligence to evaluate adherence to best practices in one anastomosis gastric bypass: first steps in a real-world setting.

Surg Endosc

January 2025

Division of General Surgery, Bariatric Unit, Tel Aviv Medical Center, Affiliated to Sackler Faculty of Medicine, Tel Aviv University, 6, Weizman St, 6423906, Tel- Aviv, Israel.

Background: Safety in one anastomosis gastric bypass (OAGB) is judged by outcomes, but it seems reasonable to utilize best practices for safety, whose performance can be evaluated and therefore improved. We aimed to test an artificial intelligence-based model in real world for the evaluation of adherence to best practices in OAGB.Please check and confirm that the authors and their respective affiliations have been correctly identified and amend if necessary.

View Article and Find Full Text PDF

Simulation-based approaches for setting indirect outcome-based analytical performance specifications (APS) predominantly involve test repetition through analytical reruns or resampling. These methodologies assess the agreement between original and simulated measurement results, determining the APS corresponding to pre-established performance thresholds. For APS related to imprecision and bias, both analytical performance characteristics (APCs) are typically considered in simulations, whereas for APS regarding measurement uncertainty, bias is excluded in alignment with traceability standards.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!