Twenty young Maremmana bulls were randomly allotted to two dietary groups during a finishing period (~90 days): C diet (without lipid supplementation), and L diet (with linseed supplementation, 20% concentrate feed). The aim was to investigate the effects of dietary linseed supplementation on the intramuscular fat composition, and the shelf-life of minced beef. The L diet did not alter the dressing rate and daily weight gain, whereas the C18:3n-3 content in the intramuscular fat significantly increased (from 0.85 to 1.78 g/100 g of total fatty acid, +109%), leading to a reduction in a n-6/n-3 ratio below four and an increase in the overall proportion of long chain n-3 fatty acids in beef lipids. These effects were principally related to differences in the distribution of fatty acids between the neutral and polar lipids. The results demonstrated that linseed supplementation modified the lipid composition of beef, without negatively impacting overall productivity, in the period from weaning the bull until its slaughter. However, the total amount of n-3 fatty acids in the beef of young bulls on the L diet, was not sufficient for the aliquot of humans' n-3 fatty acid requirements. This was mainly related to the low levels of fat in the beef. Comparing beef samples from animals on the L diet, with samples from animals on the C diet, the higher levels of n-3 polyunsaturated fatty acids led to a significant reduction of shelf-life starting after 2 days of storage at 4°C, because of fatty acid and cholesterol oxidation. The L diet group samples showed a higher level of TBARS (+80%) and COPs (+73%), two important parameters to estimate the oxidation level of beef. This suggests that enriching beef with n-3 fatty acids should be coupled with packaging techniques that consider the higher susceptibility to lipid oxidation. In conclusion, dietary linseed supplementation led to a higher proportion of n-3 fatty acids in beef lipids, however, the natural content of antioxidant substances was not able to protect intramuscular fat from oxidation during storage at 4°C.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6330289PMC
http://dx.doi.org/10.3389/fvets.2018.00326DOI Listing

Publication Analysis

Top Keywords

fatty acids
24
linseed supplementation
20
n-3 fatty
20
intramuscular fat
12
fatty acid
12
acids beef
12
beef
10
fatty
9
lipid composition
8
composition shelf-life
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!