Flame retardants in urban air: A case study in Toronto targeting distinct source sectors.

Environ Pollut

Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, Ontario, Canada. Electronic address:

Published: April 2019

Based on distinct land-use categories, a sampling campaign was carried out at eight locations across Toronto and the Greater Toronto Area in 2016-2017. Source sectors' dependent patterns of atmospheric concentrations of 9 organophosphate esters (OPEs), 9 polybrominated diphenyl ethers (PBDEs) and 5 novel flame retardants (NFRs) showed dominance of OPEs and PBDEs at highly commercialised urban and traffic sites, while NFRs, were dominant at residential sites. Overall, average concentrations of ΣOPEs (1790 pg/m) were two orders of magnitude higher than ΣPBDEs (9.17 pg/m) and ΣNFRs (8.14 pg/m). The atmospheric concentrations of given chemical classes also showed a general trend of lower levels in winter as compared to summer months. Statistically significant negative correlations between the natural logarithm of concentrations and inverse of temperature for some OPEs and PBDEs highlighted the role of volatilization from local sources at given sites as primarily influencing their atmospheric concentrations. Overall, this study adds to the current knowledge of urban settings as a major emitter of the chemicals of emerging concern and their replacements, as well as the ongoing problem of phased out PBDEs due to their presence in existing inventories of commercial/recycled products. It is recommended that long-term monitoring programs targeting flame retardants (FRs) include urban sites, which provide an early indicator of effectiveness of control measures of targeted FRs, while at the same time providing information on emission sources and trends of replacement FR chemicals.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2019.01.027DOI Listing

Publication Analysis

Top Keywords

flame retardants
12
atmospheric concentrations
12
opes pbdes
8
concentrations
5
urban
4
retardants urban
4
urban air
4
air case
4
case study
4
study toronto
4

Similar Publications

Halogenated organic compounds in mangrove sediments from Bintan Island, Indonesia: Occurrence, profiles, sources, and potential ecological risk.

Environ Pollut

January 2025

Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan; Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577, Japan. Electronic address:

The first comprehensive analysis of halogenated organic compounds (HOCs), including 209 full congeners of polychlorinated biphenyls (PCBs), 26 organochlorinated pesticides (OCPs), 41 polybrominated diphenyl ethers (PBDEs), and four other brominated flame retardants (BFRs), was performed on surface mangrove sediments from Bintan Island, Province of the Riau Archipelago, Indonesia. Among the measured HOC contaminants, the mean concentration of ∑PCBs (2.3±0.

View Article and Find Full Text PDF

Functionalization of chitosan and its application in flame retardant: A review.

Int J Biol Macromol

January 2025

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China. Electronic address:

In recent years, bio-based flame retardants have gained significant attention as sustainable alternatives, achieving important breakthroughs in flame retardancy and becoming a key focus for future development. Derived from biomass, chitosan (CS) has been widely used in the field of advanced functional materials. However, in the field of flame retardancy, chitosan alone shows limited effectiveness, leading researchers to explore its reactive functional groups for creating multifunctional flame retardant chitosan composites (FRCC).

View Article and Find Full Text PDF

The durability and flame retardancy of cotton fabrics have been the focus of long-term research. In this paper, a method for preparing flame retardants through the direct modification of biomass was proposed, and the durable flame retardant of homologous cottonseed meal modified biomass flame retardants for cotton fabrics was achieved through biomass composition analysis and modeling. In this study, a cottonseed meal-phosphoric acid-boric acid synergistic bio-based flame retardant (CPB) was synthesized and characterized.

View Article and Find Full Text PDF

Impact of phosphorus on the functional properties of extracellular polymeric substances recovered from sludge.

Water Res

December 2024

Deptartment of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft, HZ 2629, the Netherlands; Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark.

Extracellular Polymeric Substances (EPS) are ubiquitous in biological wastewater treatment (WWT) technologies like activated sludge systems, biofilm reactors, and granular sludge systems. EPS recovery from sludge potentially offers a high-value material for the industry. It can be utilized as a coating in slow-release fertilizers, as a bio-stimulant, as a binding agent in building materials, for the production of flame retarding materials, and more.

View Article and Find Full Text PDF

Biopolymer-Based Flame Retardants and Flame-Retardant Materials.

Adv Mater

January 2025

Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China.

Polymeric materials featuring excellent flame retardancy are essential for applications requiring high levels of fire safety, while those based on biopolymers are highly favored due to their eco-friendly nature, sustainable characteristics, and abundant availability. This review first outlines the pyrolysis behaviors of biopolymers, with particular emphasis on naturally occurring ones derived from non-food sources such as cellulose, chitin/chitosan, alginate, and lignin. Then, the strategies for chemical modifications of biopolymers for flame-retardant purposes through covalent, ionic, and coordination bonds are presented and compared.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!