Runoff and over-use of fertilizers have been considered as two major factors accelerating the discharge of nitrogen (N) and phosphorus (P) from agricultural fields to surface water. The practice of vetiver grass hedgerows (VGH) can check sediments and runoff pollutants from agricultural fields. However, the efficiency of VGH in reducing N and P losses while maintaining optimum crop yields is still unclear under a recommended fertilization rate. A three-year field experiment was conducted on a 10 sloping land to know how VGH can reduce the discharge of runoff nutrients to surface water bodies and maintain optimum crop yields, and to understand the relationships between changing soil properties and reduction of sediments N and P due to the adoption of VGH. Five fertilization treatments to VGH were examined under VGH plus organic fertilizer (VGH + OF), VGH plus inorganic fertilizer (VGH + IF), sole organic or inorganic fertilizer (OF or IF) and no VGH and fertilizer (Control). Runoff nutrient pollutants PO, NO-N and NH-N were significantly (P < 0.01) reduced by VGH + OF compared to OF by 97%, 94% and 95% and VGH + IF compared to IF by 95%, 88% and 89% respectively for 2012, 2013 and 2014. Sediment nutrients N and P were significantly (P < 0.01) reduced by VGH + OF compared to OF by 98% and 99%, and VGH + IF compared to IF by 94% and 99%, respectively. Improved soil properties by VGH significantly (P < 0.01) reduced runoff pollutants and consequently increased maize yields. Our results imply that runoff erosion, rather than fertilization, is a major driving force for agriculture-derived water pollution. Adoption of VGH with a recommended fertilization rate could significantly reduce N and P nutrient losses from agricultural fields and consequently improve water quality as well as maintaining optimum crop yields on sloping lands.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2019.01.129 | DOI Listing |
Sci Rep
January 2025
Department of Environmental Engineering, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia.
Textile wastewater poses significant risks if discharged untreated, especially due to the presence of synthetic dyes, salts, and heavy metals. As a result, constructed wetlands have emerged as a promising solution for sustainable textile wastewater management. In this context, this study evaluates a micro-scale vertical subsurface flow constructed wetland (VSSFCW) for treating textile wastewater.
View Article and Find Full Text PDFEnviron Geochem Health
December 2024
East Kutai Agricultural College School, Sangatta, Indonesia.
This study evaluates the effectiveness of phytoremediation strategies in mitigating the environmental impacts of gold mine tailings through a bibliometric and systematic review. Utilizing the PRISMA methodology, 45 primary research articles were selected and analyzed, highlighting key rends and insights in phytoremediation research. The review spans over two decades of research, with a notable annual growth rate of 2.
View Article and Find Full Text PDFEnviron Monit Assess
November 2024
Nammazhvar Organic Farming Research Centre, Tamil Nadu Agricultural University, Coimbatore, 641003, Tamil Nadu, India.
Metab Brain Dis
November 2024
Department of Physiology, Faculty of Medicine, Süleyman Demirel University, Isparta, 32260, Turkey.
Chemosphere
September 2024
State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China; Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China. Electronic address:
Bioretention cells have emerged as a prominent strategy for mitigating pollutant loads within urban stormwater runoff. This study delves into the role of plant uptake in the simultaneous removal of nitrogen and phosphorus compounds within these systems. Three bioretention cells-CP, P1, and P2-were constructed using local soil, C33 sand, and gravel.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!