The influence of pH on the interfacial behaviour of Quillaja bark saponin at the air-solution interface.

Colloids Surf B Biointerfaces

Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, SA, 5095, Australia; School of Information Technology and Mathematical Sciences, University of South Australia, Mawson Lakes Campus, Mawson Lakes, SA, 5095, Australia. Electronic address:

Published: April 2019

The interfacial behavior of surfactants present in a natural extract from Quillaja saponaria Molina bark at the air-solution interface is studied by measurements of interfacial tension, interfacial elasticity, and interfacial reflectance FTIR spectroscopy. The active molecule, saponin, is observed directly at the air-solution interface (via reflectance FTIR spectroscopy) above and below the pKa of the molecule, and spectra confirm the altered charge of the interfacial layer at the two solution conditions. For all concentrations of saponin studied, and at pH values below and above pKa (i.e. pH 3 and 7), a reduction in interfacial tension as a function of time is observed, with some differences in early time-scale adsorption and with lower values of quasi-equilibrium interfacial tension for pH 3. The interfacial layer is seen to be elastic, as determined from measurements of hydrostatic expansion, with some variation at the two pH values, and as a function of concentration. In addition to interfacial layer characterisation, the interaction between two air-solution interfaces is probed using bubble collisions with an air-solution interface. This experiment allows for observation of thin film drainage kinetics and determination of the final foam film thickness for the case when one of the interfaces is at equilibrium while the dynamic adsorption layer is being established at the other. This is the first time when the interactions between such interfaces (i.e. only one being at equilibrium) have been studied. This is of particular importance for the formation stage of foams, during which time many of the interfaces are not at equilibrium. When two interfaces interact across a thin liquid film, pH is seen to significantly influence foam film thickness.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2019.01.017DOI Listing

Publication Analysis

Top Keywords

air-solution interface
16
interfacial tension
12
interfacial layer
12
interfaces equilibrium
12
interfacial
9
tension interfacial
8
reflectance ftir
8
ftir spectroscopy
8
foam film
8
film thickness
8

Similar Publications

Energy Band Alignment and Defect Synergistic Regulation Enable Air-Solution-Processed Kesterite Solar Cells With the Lowest V Deficit.

Adv Mater

November 2024

Institute of Thin Film Physics and Applications, Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.

The major challenge in preparing high-performance CuZnSn(S,Se) solar cells is the large open circuit voltage deficit (V-def). A new strategy utilizing the synergistic substitution of Ag and In dual cations has been proposed to simultaneously address the problems of undesirable interface band alignment and high-density detrimental bulk defects, obtaining decreased carrier recombination rate and increased minority carrier lifetime. The shorter In-S/Se bonds move the CBM higher by generating stronger repulsive force than the Sn-S/Se bonds, thus adjusting the interface band alignment.

View Article and Find Full Text PDF

Hypothesis: Saponins are highly surface active glycosides, and are extensively used to stabilise emulsions and foams in beverages, foods, and cosmetics. Derived from a variety of plant species these naturally occurring biosurfactants have wider potential for inclusion in many low carbon and or sustainably sourced products. Although their adsorption at the air-solution and liquid-liquid interfaces has been extensively studied, the nature of their adsorption at solid surfaces is much less clear.

View Article and Find Full Text PDF

Gemini surfactants are ideal systems to study a wide range of rheological behaviours in soft matter, showing fascinating analogies with living polymers and polyelectrolytes. By only changing the concentration, the shear viscosity can vary by 7 orders of magnitude in the bulk when transitioning through the semidilute regime. In order to elucidate on the intrinsic shear viscosity profile at the interface in soft matter systems manifesting various concentration regimes and morphological transitions, we performed microrheology and adsorption experiments under a wide range of experimental conditions.

View Article and Find Full Text PDF

Liquid-like protein condensates have recently attracted much attention due to their critical roles in biological phenomena. They typically show high fluidity and reversibility for exhibiting biological functions, while occasionally serving as sites for the formation of amyloid fibrils. To comprehend the properties of protein condensates that underlie biological function and pathogenesis, it is crucial to study them at the single-condensate level; however, this is currently challenging due to a lack of applicable methods.

View Article and Find Full Text PDF

Optical trapping-induced crystallization promoted by gold and silicon nanoparticles.

Photochem Photobiol Sci

September 2024

Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan.

This study investigates the promotion of sodium chlorate (NaClO) crystallization through optical trapping, enhanced by the addition of gold nanoparticles (AuNPs) and silicon nanoparticles (SiNPs). Using a focused laser beam at the air-solution interface of a saturated NaClO solution with AuNPs or SiNPs, the aggregates of these particles were formed at the laser focus, the nucleation and growth of metastable NaClO (m-NaClO) crystals were induced. Continued laser irradiation caused these m-NaClO crystals to undergo repeated cycles of growth and dissolution, eventually transitioning to a stable crystal form.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!