A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Machine learning as a supportive tool to recognize cardiac arrest in emergency calls. | LitMetric

Background: Emergency medical dispatchers fail to identify approximately 25% of cases of out of hospital cardiac arrest, thus lose the opportunity to provide the caller instructions in cardiopulmonary resuscitation. We examined whether a machine learning framework could recognize out-of-hospital cardiac arrest from audio files of calls to the emergency medical dispatch center.

Methods: For all incidents responded to by Emergency Medical Dispatch Center Copenhagen in 2014, the associated call was retrieved. A machine learning framework was trained to recognize cardiac arrest from the recorded calls. Sensitivity, specificity, and positive predictive value for recognizing out-of-hospital cardiac arrest were calculated. The performance of the machine learning framework was compared to the actual recognition and time-to-recognition of cardiac arrest by medical dispatchers.

Results: We examined 108,607 emergency calls, of which 918 (0.8%) were out-of-hospital cardiac arrest calls eligible for analysis. Compared with medical dispatchers, the machine learning framework had a significantly higher sensitivity (72.5% vs. 84.1%, p < 0.001) with lower specificity (98.8% vs. 97.3%, p < 0.001). The machine learning framework had a lower positive predictive value than dispatchers (20.9% vs. 33.0%, p < 0.001). Time-to-recognition was significantly shorter for the machine learning framework compared to the dispatchers (median 44 seconds vs. 54 s, p < 0.001).

Conclusions: A machine learning framework performed better than emergency medical dispatchers for identifying out-of-hospital cardiac arrest in emergency phone calls. Machine learning may play an important role as a decision support tool for emergency medical dispatchers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.resuscitation.2019.01.015DOI Listing

Publication Analysis

Top Keywords

cardiac arrest
28
machine learning
20
learning framework
16
emergency medical
12
out-of-hospital cardiac
12
recognize cardiac
8
emergency calls
8
medical dispatchers
8
medical dispatch
8
cardiac
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!