Structural basis for the design of selective inhibitors for Schistosoma mansoni dihydroorotate dehydrogenase.

Biochimie

Laboratório de Cristalografia de Proteínas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14040-903, Brazil.

Published: March 2019

Trematode worms of the genus Schistosoma are the causing agents of schistosomiasis, a parasitic disease responsible for a considerable economic and healthy burden worldwide. In the present work, the characterization of the enzyme dihydroorotate dehydrogenase from Schistosoma mansoni (SmDHODH) is presented. Our studies demonstrated that SmDHODH is a member of class 2 DHODHs and catalyzes the oxidation of dihydroorotate into orotate using quinone as an electron acceptor by employing a ping-pong mechanism of catalysis. SmDHODH homology model showed the presence of all structural features reported for class 2 DHODH enzymes and reveal the presence of an additional protuberant domain predicted to fold as a flexible loop and absent in the other known class 2 DHODHs. Molecular dynamics simulations showed that the ligand-free forms of SmDHODH and HsDHODH undergo different rearrangements in solution. Well-known class 2 DHODH inhibitors were tested against SmDHODH and HsDHODH and the results suggest that the variable nature of the quinone-binding tunnel between human and parasite enzymes, as well as the differences in structural plasticity involving rearrangements of the N-terminal α-helical domain can be exploited for the design of SmDHODH selective inhibitors, as a strategy to validate DHODH as a drug target against schistosomiasis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biochi.2019.01.006DOI Listing

Publication Analysis

Top Keywords

selective inhibitors
8
schistosoma mansoni
8
dihydroorotate dehydrogenase
8
class dhodhs
8
class dhodh
8
smdhodh hsdhodh
8
smdhodh
6
structural basis
4
basis design
4
design selective
4

Similar Publications

The Zika virus (ZIKV), an arbovirus within the Flavivirus genus, is associated with severe neurological complications, including Guillain-Barré syndrome in affected individuals and microcephaly in infants born to infected mothers. With no approved vaccines or antiviral treatments available, there is an urgent need for effective therapeutic options. This study aimed to identify new natural compounds with inhibitory potential against the NS2B-NS3 protease (PDB ID: 5LC0), an essential enzyme in viral replication.

View Article and Find Full Text PDF

In this work, artificial neural network coupled with multi-objective genetic algorithm (ANN-NSGA-II) has been used to develop a model and optimize the conditions for the extracting of the Mentha longifolia (L.) L. plant.

View Article and Find Full Text PDF

In recent years, immune checkpoint inhibitors (ICIs) has emerged as a fundamental component of the standard treatment regimen for patients with head and neck squamous cell carcinoma (HNSCC). However, accurately predicting the treatment effectiveness of ICIs for patients at the same TNM stage remains a challenge. In this study, we first combined multi-omics data (mRNA, lncRNA, miRNA, DNA methylation, and somatic mutations) and 10 clustering algorithms, successfully identifying two distinct cancer subtypes (CSs) (CS1 and CS2).

View Article and Find Full Text PDF

Mutation of genes related to the SWI/SNF chromatin remodeling complex is detected in 20% of all cancers. The SWI/SNF chromatin remodeling complex comprises about 15 subunits and is classified into three subcomplexes: cBAF, PBAF, and ncBAF. Previously, we showed that ovarian clear cell carcinoma cells deficient in ARID1A, a subunit of the cBAF complex, are synthetic lethal with several genes required for glutathione (GSH) synthesis and are therefore sensitive to the GSH inhibitor eprenetapopt (APR-246).

View Article and Find Full Text PDF

Sixteen thio/semicarbazide-based benzyloxy derivatives (BT1-BT16) were synthesized and evaluated for their inhibitory activities against monoamine oxidases (MAOs). Most compounds showed better inhibitory activity against MAO-B than against MAO-A. BT1, BT3, and BT5 showed the greatest inhibitory activity with an identical IC value of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!