Neural crest cells have broad migratory and differentiative ability that differs according to their axial level of origin. However, their transient nature has limited understanding of their stem cell and self-renewal properties. While an in vitro culture method has made it possible to maintain cranial neural crest cells as self-renewing multipotent crestospheres (Kerosuo et al., 2015), these same conditions failed to preserve trunk neural crest in a stem-like state. Here we optimize culture conditions for maintenance of avian trunk crestospheres, comprised of both neural crest stem and progenitor cells. Our trunk-derived crestospheres are multipotent and display self-renewal capacity over several weeks. Trunk crestospheres display elevated expression of neural crest cell markers as compared to those characteristic of ventrolateral neural tube or mesodermal fates. Moreover, trunk crestospheres express increased levels of trunk neural crest-enriched markers as compared to cranial crestospheres. Finally, we use lentiviral transduction as a tool to manipulate gene expression in trunk crestospheres. Taken together, this method enables long-term in vitro maintenance and manipulation of multipotent trunk neural crest cells in a premigratory stem or early progenitor state. Trunk crestospheres are a valuable resource for probing mechanisms underlying neural crest stemness and lineage decisions as well as accompanying diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6497816 | PMC |
http://dx.doi.org/10.1016/j.ydbio.2019.01.010 | DOI Listing |
Clin Oral Investig
January 2025
State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
Objectives: To develop a platform including a deep convolutional neural network (DCNN) for automatic segmentation of the maxillary sinus (MS) and adjacent structures, and automatic algorithms for measuring 3-dimensional (3D) clinical parameters.
Materials And Methods: 175 CBCTs containing 242 MS were used as the training, validating and testing datasets at the ratio of 7:1:2. The datasets contained healthy MS and MS with mild (2-4 mm), moderate (4-10 mm) and severe (10- mm) mucosal thickening.
J Pathol
January 2025
SIREDO Oncology Center (Care, Innovation and Research for Children and AYA with Cancer), Institut Curie, Université Paris Cité, Paris, France.
Rhabdoid tumours (RT) are an aggressive malignancy affecting <2-year-old infants, characterised by biallelic loss-of-function alterations in SWI/SNF-related BAF chromatin remodelling complex subunit B1 (SMARCB1) in nearly all cases. Germline SMARCB1 alterations are found in ~30% of patients and define the RT Predisposition Syndrome type 1 (RTPS1). Uveal melanoma (UVM), the most common primary intraocular cancer in adults, does not harbour SMARCB1 alterations.
View Article and Find Full Text PDFCells
January 2025
Department of Neurosciences, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
The adult human spinal cord harbors diverse populations of neural stem/progenitor cells (NSPCs) essential for neuroregeneration and central nervous system repair. While induced pluripotent stem cell (iPSC)-derived NSPCs offer significant therapeutic potential, understanding their molecular and functional alignment with bona fide spinal cord NSPCs is crucial for developing autologous cell therapies that enhance spinal cord regeneration and minimize immune rejection. In this study, we present the first direct transcriptomic and functional comparison of syngeneic adult human NSPC populations, including bona fide spinal cord NSPCs and iPSC-derived NSPCs regionalized to the spinal cord (iPSC-SC) and forebrain (iPSC-Br).
View Article and Find Full Text PDFStem Cell Res Ther
January 2025
Department of Pediatric Surgery, Qilu Hospital of Shandong University, Jinan, China.
Background: Understanding how enteric neural crest cells (ENCCs) differentiate into neurons is crucial for neurogenesis therapy and gastrointestinal disease research. This study explores how magnesium ions regulate the glycolytic pathway to enhance ENCCs differentiation into neurons.
Materials And Methods: We used polymerase chain reaction, western blot, immunofluorescence, and multielectrode array techniques to assess magnesium ions' impact on ENCCs differentiation.
Trends Neurosci
January 2025
Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA. Electronic address:
The evolution of vertebrates from protochordate ancestors marked the beginning of the gradual transition to predatory lifestyles. Enabled by the acquisition of multipotent neural crest and cranial placode cell populations, vertebrates developed an elaborate peripheral nervous system, equipped with paired sense organs, which aided in adaptive behaviors and ultimately, successful colonization of diverse environmental niches. Underpinning the enduring success of vertebrates is the highly adaptable nature of the peripheral nervous system, which is enabled by the exceptional malleability of the neural crest and placode developmental programs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!