Physiology of FGF23 and overview of genetic diseases associated with renal phosphate wasting.

Metabolism

Paris Descartes University of Medicine, Necker-Enfants Malades Institute, INSERM U1151, France; Functional Exploration Department, Necker-Enfants Malades Hospital, AP-HP, Paris, France.

Published: February 2020

Phosphate is a cornerstone of several physiological pathways including skeletal development, bone mineralization, membrane composition, nucleotide structure, maintenance of plasma pH, and cellular signaling. The kidneys have a key role in phosphate homeostasis with three hormones having important functions in renal phosphate handling or intestinal absorption: parathyroid hormone (PTH), fibroblast growth factor 23 (FGF23), and 1-25-dihydroxyvitamin D (1,25(OH)2D). FGF23 is mainly synthesized by osteocytes; it is a direct phosphaturic factor that also inhibits 1,25(OH)2D and PTH. In addition to crucial effects on phosphate and calcium metabolism, FGF23 also has 'off-target' effects notably on the cardiovascular, immune and central nervous systems. Genetic diseases may affect the FGF23 pathway, resulting in either increased FGF23 levels leading to hypophosphatemia (such as in X-linked hypophosphatemia) or defective secretion/action of intact FGF23 inducing hyperphosphatemia (such as in familial tumoral calcinosis). The aim of this review is to provide an overview of FGF23 physiology and pathophysiology in X-linked hypophosphatemia, with a focus on FGF23-associated genetic diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.metabol.2019.01.006DOI Listing

Publication Analysis

Top Keywords

genetic diseases
12
renal phosphate
8
x-linked hypophosphatemia
8
fgf23
7
phosphate
5
physiology fgf23
4
fgf23 overview
4
overview genetic
4
diseases associated
4
associated renal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!