ALK phosphorylates SMAD4 on tyrosine to disable TGF-β tumour suppressor functions.

Nat Cell Biol

MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China.

Published: February 2019

Loss of TGF-β tumour suppressive response is a hallmark of human cancers. As a central player in TGF-β signal transduction, SMAD4 (also known as DPC4) is frequently mutated or deleted in gastrointestinal and pancreatic cancer. However, such genetic alterations are rare in most cancer types and the underlying mechanism for TGF-β resistance is not understood. Here we describe a mechanism of TGF-β resistance in ALK-positive tumours, including lymphoma, lung cancer and neuroblastoma. We demonstrate that, in ALK-positive tumours, ALK directly phosphorylates SMAD4 at Tyr 95. Phosphorylated SMAD4 is unable to bind to DNA and fails to elicit TGF-β gene responses and tumour suppressing responses. Chemical or genetic interference of the oncogenic ALK restores TGF-β responses in ALK-positive tumour cells. These findings reveal that SMAD4 is tyrosine-phosphorylated by an oncogenic tyrosine kinase during tumorigenesis. This suggests a mechanism by which SMAD4 is inactivated in cancers and provides guidance for targeted therapies in ALK-positive cancers.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41556-018-0264-3DOI Listing

Publication Analysis

Top Keywords

phosphorylates smad4
8
tgf-β tumour
8
mechanism tgf-β
8
tgf-β resistance
8
alk-positive tumours
8
tgf-β
7
smad4
6
alk phosphorylates
4
smad4 tyrosine
4
tyrosine disable
4

Similar Publications

SMAD4 Regulates the Expression of LCK Affecting Chimeric Antigen Receptor-T Cells Proliferation Through PI3K/Akt Signaling Pathway.

J Cell Physiol

January 2025

Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.

The proliferation of CAR-T cells was hindered and cannot play its killing function well in solid tumors. And yet the regulatory mechanism of CAR-T cell proliferation is not fully understood. Here, we showed that recombinant expression of CD19CAR in T cells significantly increased the basal activation level of CAR-T cells and LCK activation.

View Article and Find Full Text PDF

DRD4 Interacts with TGF-β Receptors to Drive Colorectal Cancer Metastasis Independently of Dopamine Signaling Pathway.

Adv Sci (Weinh)

December 2024

Department of Pathology and Run Run Shaw Hospital, Research Unit of Intelligence Classifification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.

The functional and pharmacological significance of dopamine receptor D4 (DRD4) in psychiatric and neurological disorders is well elucidated. However, the roles of DRD4 in colorectal cancer (CRC) remain unclear. This study observes a significant upregulation of DRD4 expression in clinical samples, which is negatively correlated with patient prognosis.

View Article and Find Full Text PDF

Recent studies have linked pain and the resultant nociception-induced neural inflammation (NINI) to trauma-induced heterotopic ossification (THO). It is postulated that nociception at the injury site stimulates the transient receptor potential vanilloid-1 (the transient receptor potential cation channel subfamily V member 1) receptors on sensory nerves within the injured tissues resulting in the expression of neuroinflammatory peptides, substance P (SP), and calcitonin gene-related peptide (CGRP). Additionally, BMP-2 released from fractured bones and soft tissue injury also selectively activates TRVP1 receptors, resulting in the release of SP and CGRP and causing neuroinflammation and degranulation of mast cells causing the breakdown the blood-nerve barrier (BNB), leading to release of neural crest derived progenitor cells (NCDPCs) into the injured tissue.

View Article and Find Full Text PDF

Oocyte-derived growth differentiation factor 9 suppresses the expression of CYP17A1 and androgen production in human theca cells.

F S Sci

February 2024

Reproductive Medicine Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China; Guangdong Provincial Key Laboratory of Reproductive Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China. Electronic address:

Article Synopsis
  • The study aimed to explore how growth differentiation factor 9 (GDF9) affects androgen production in theca cells, which are related to ovarian function.
  • Researchers treated cultured human theca cells with GDF9, an ALK5 inhibitor, and a SMAD4 agonist to observe changes in gene expression related to androgen synthesis and related signaling pathways.
  • The results showed that GDF9 reduced the expression of key genes involved in androgen production and activated specific signaling pathways, indicating its role in suppressing androgen production in these cells.
View Article and Find Full Text PDF
Article Synopsis
  • Bone morphogenetic proteins (BMPs) play a key role in the development and differentiation of bone and cartilage, particularly through their interactions with specific receptors on cells.
  • In mouse chondrocyte precursor cells (ATDC5), the protein MSK1 is rapidly activated by BMP-6 stimulation, influencing the differentiation processes when either overexpressed or suppressed.
  • The study highlights the involvement of both p38 kinase pathways and Smad proteins in BMP-6-induced chondrocyte differentiation, indicating that MSK1 activation is essential for these processes.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!