The field of miniature mechanical oscillators is rapidly evolving, with emerging applications including signal processing, biological detection and fundamental tests of quantum mechanics. As the dimensions of a mechanical oscillator shrink to the molecular scale, such as in a carbon nanotube resonator, their vibrations become increasingly coupled and strongly interacting until even weak thermal fluctuations could make the oscillator nonlinear. The mechanics at this scale possesses rich dynamics, unexplored because an efficient way of detecting the motion in real time is lacking. Here we directly measure the thermal vibrations of a carbon nanotube in real time using a high-finesse micrometre-scale silicon nitride optical cavity as a sensitive photonic microscope. With the high displacement sensitivity of 700 fm Hz and the fine time resolution of this technique, we were able to discover a realm of dynamics undetected by previous time-averaged measurements and a room-temperature coherence that is nearly three orders of magnitude longer than previously reported. We find that the discrepancy in the coherence stems from long-time non-equilibrium dynamics, analogous to the Fermi-Pasta-Ulam-Tsingou recurrence seen in nonlinear systems. Our data unveil the emergence of a weakly chaotic mechanical breather, in which vibrational energy is recurrently shared among several resonance modes-dynamics that we are able to reproduce using a simple numerical model. These experiments open up the study of nonlinear mechanical systems in the Brownian limit (that is, when a system is driven solely by thermal fluctuations) and present an integrated, sensitive, high-bandwidth nanophotonic interface for carbon nanotube resonators.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41586-018-0861-0 | DOI Listing |
J Sep Sci
January 2025
Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran.
Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic compounds resulting from incomplete burning of organic materials. This work describes the successful layer-by-layer fabrication of a novel zinc oxide nanocomposite made of zinc oxide nanoparticles, aniline, sodium dodecyl sulfate, and modified multi-walled carbon nanotubes on a stainless steel wire by electrodeposition. The coating and extraction conditions were screened, optimized, and validated using factorial design and central composite design, respectively.
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak 38156-8-8349, Iran.
In the 21st century, thanks to advances in biotechnology and developing pharmaceutical technology, significant progress is being made in effective drug design. Drug targeting aims to ensure that the drug acts only in the pathological area; it is defined as the ability to accumulate selectively and quantitatively in the target tissue or organ, regardless of the chemical structure of the active drug substance and the method of administration. With drug targeting, conventional, biotechnological and gene-derived drugs target the body's organs, tissues, and cells that can be selectively transported to specific regions.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Academic Unit of Materials Engineering, Federal University of Campina Grande, Av. Aprígio Veloso, 882-Bodocongó, Campina Grande 58429-900, PB, Brazil.
In this research, poly(lactic acid) (PLA) nanocomposites with multi-walled carbon nanotubes (MWCNT) were produced by extrusion, injection, and compression molding, focusing on electromagnetic shielding. Various amounts of carbon nanotubes (MWCNTs) were tested in PLA matrix, specifically ranging from 1 to 4 parts per hundred resin (phr). The resulting nanocomposites were analyzed before and after undergoing annealing heat treatment.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Chemical Engineering, Dr B R Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India.
Antimicrobial polymeric coatings rely not only on their surface functionalities but also on nanoparticles (NPs). Antimicrobial coatings gain their properties from the addition of NPs into a polymeric matrix. NPs that have been used include metal-based NPs, metal oxide NPs, carbon-based nanomaterials, and organic NPs.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Mechanical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal.
Smart textiles provide a significant technological advancement, but their development must balance traditional textile properties with electronic features. To address this challenge, this study introduces a flexible, electrically conductive composite material that can be fabricated using a continuous bi-component extrusion process, making it ideal for sensor electrodes. The primary aim was to create a composite for the filament's core, combining multi-walled carbon nanotubes (MWCNTs), polypropylene (PP), and thermoplastic elastomer (TPE), optimised for conductivity and flexibility.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!