Although the expression of cyclooxygenase-2 (COX-2) is closely associated with inflammation in the brain, it is constitutively expressed in the brain, and its expression is regulated by synaptic activity. The present study investigated postnatal expression of COX‑2 in the hippocampus in C57BL/6 mice at postnatal days (P) 1, 7, 14, 28, and 56. In addition, the presented study examined the effects of COX‑2 on synaptic plasticity through Arc, phosphorylated cAMP response element‑binding protein (pCREB), N‑methyl‑d‑aspartate receptor 1 (GluN1), and GluN2A/2B immunohistochemistry, which was performed on COX‑2 knockout (KO) and wild‑type (WT) mice. Extremely weak COX‑2 immunoreactivity was detected in the hippocampal CA1‑3 areas in addition to the dentate gyrus at P1. Conversely, COX‑2 immunoreactivity was observed in the stratum pyramidale of the CA1‑3 regions and in the outer granule cell layer of the dentate gyrus at P7. Additionally, although peak COX‑2 immunoreactivity was observed in all hippocampal sub‑regions, including the dentate gyrus at P14, it was significantly decreased at P14. Finally, COX‑2 immunoreactivity and the distribution pattern seen at P56 in the hippocampal CA1‑3 regions were similar to those observed at P28, whereas, they were identified in the inner half of the granule cell layer of the dentate gyrus. The western blot analysis revealed that the COX‑2 protein levels peaked at P14 and were decreased at P28 and P56. Additionally, the number of Arc and pCREB immunoreactive cells as well as GluN1 and GluN2A/2B immunoreactivity of COX‑2 KO mice were significantly decreased in the dentate gyrus when compared with that in WT mice. Taken together, the results of the present study suggest that COX‑2 serves an important role in synaptic plasticity in the dentate gyrus and changes in the levels of its constitutive expression are associated with the hippocampal dentate gyrus postnatal development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6390017 | PMC |
http://dx.doi.org/10.3892/mmr.2019.9867 | DOI Listing |
Int J Mol Sci
January 2025
Department of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow 117485, Russia.
Traumatic brain injury (TBI) is one of the primary causes of mortality and disability, with arterial blood pressure being an important factor in the clinical management of TBI. Spontaneously hypertensive rats (SHRs), widely used as a model of essential hypertension and vascular dementia, demonstrate dysfunction of the hypothalamic-pituitary-adrenal axis, which may contribute to glucocorticoid-mediated hippocampal damage. The aim of this study was to assess acute post-TBI seizures, delayed mortality, and hippocampal pathology in SHRs and normotensive Sprague Dawley rats (SDRs).
View Article and Find Full Text PDFMicroorganisms
January 2025
State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China.
Elucidating the gene regulatory mechanisms underlying the gut-brain axis is critical for uncovering novel gut-brain interaction pathways and developing therapeutic strategies for gut bacteria-associated neurological disorders. Most studies have primarily investigated how gut bacteria modulate host epigenetics and gene expression; their impact on host alternative splicing, particularly in the brain, remains largely unexplored. Here, we investigated the effects of the gut-associated probiotic Lacidofil on alternative splicing across 10 regions of the rat brain using published RNA-sequencing data.
View Article and Find Full Text PDFBiomolecules
January 2025
Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
Reactive astrogliosis and acidosis, common features of epileptogenic lesions, express a high level of astrocytic acid-sensing ion channel-1a (ASIC1a), a proton-gated cation channel and key mediator of responses to neuronal injury. This study investigates the role of astrocytic ASIC1a in cognitive impairment following epilepsy. Status epilepticus (SE) in C57/BL6 mice was induced using lithium-pilocarpine; the impact of ASIC1a on astrocytes was assessed using rAAV-ASIC1a-NC and rAAV-ASIC1a-shRNA, injected in the CA3 region of mice.
View Article and Find Full Text PDFJ Neuroinflammation
January 2025
Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
The brain presents various structural and functional sex differences, for which multiple factors are attributed: genetic, epigenetic, metabolic, and hormonal. While biological sex is determined by both sex chromosomes and sex hormones, little is known about how these two factors interact to establish this dimorphism. Sex differences in the brain also affect its resident immune cells, microglia, which actively survey the brain parenchyma and interact with sex hormones throughout life.
View Article and Find Full Text PDFProg Neurobiol
January 2025
Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Universidad de Valparaíso, Valparaíso 2340000, Chile; Millennium Nucleus of Neuroepigenetics and Plasticity (EpiNeuro), Santiago, Chile. Electronic address:
Ketamine administration during adolescence affects cognitive performance; however, its long-term impact on synaptic function and neuronal integration in the hippocampus a brain region critical for cognition remains unclear. Using functional and molecular analyses, we found that chronic ketamine administration during adolescence exerts long-term effects on synaptic integration, expanding the temporal window in an input-specific manner affecting the inner molecular layer but not the medial perforant path inputs in the adult mouse dorsal hippocampal dentate gyrus. Ketamine also alters the excitatory/inhibitory balance by reducing the efficacy of inhibitory inputs likely due to a reduction in parvalbumin-positive interneurons number and function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!