Adiponectin (APN) exerts anti‑inflammatory effects in various cells. Uric acid (UA) induces inflammation in proximal renal tubular epithelial cells (PTECs). It remains unknown whether APN protects against UA‑induced inflammation. In the present study, human PTECs were incubated with 100 µg/ml soluble (S) UA in the presence or absence of globular (g) APN, APN receptor 1 (AdipoR1)‑short hairpin RNA lentivirus or compound C. Reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) assays were performed to assess APN mRNA expression. Immunoblotting was used to assess the protein expression of APN, AdipoR1, NACHT, leucine rich repeat and pyrin domain‑containing protein 3 (NLRP3) and the activation of tumor necrosis factor (TNF) α and adenosine monophosphate‑activated protein kinase (AMPK). ELISA analyses were performed to assess supernatant levels of interleukin (IL)‑1β and TNFα. It was observed that SUA significantly enhanced APN mRNA and protein expression (both P<0.05) and increased NLRP3 (P<0.001) and TNFα (P<0.05) protein levels, as well as supernatant levels of IL‑1β (P<0.01) and TNFα (P<0.001) compared with untreated cells. gAPN administration significantly limited TNFα synthesis and secretion (both P<0.001), significantly decreased IL‑1β release (P<0.01), impacted NLRP3 protein expression and augmented AdipoR1 protein (P<0.01) and AMPK phosphorylation (P<0.05) levels compared with SUA‑treated cells. AdipoR1 knockdown significantly promoted the synthesis (P<0.05) and release of TNFα (P<0.001), significantly increased IL‑1β supernatant levels (P<0.01) and exhibited little influence on NLRP3 production (P>0.05) compared with the SUA‑treated cells. Secreted TNFα levels were significantly increased upon the inhibition of AMPK (P<0.05) and protein levels of IL‑1β, NLRP3 and TNFα in cell lysates were not significantly affected (P>0.05). In summary, the data demonstrated that SUA promoted APN expression in PTECs and that gAPN attenuated SUA‑induced inflammation through the AdipoR1/AMPK signaling pathway. AdipoR1 knockdown and AMPK inactivation increased SUA‑induced inflammatory damage in PTECs. These findings may help to further understand and regulate UA‑associated inflammation in proximal renal tubules.

Download full-text PDF

Source
http://dx.doi.org/10.3892/ijmm.2019.4072DOI Listing

Publication Analysis

Top Keywords

renal tubular
8
tubular epithelial
8
performed assess
8
apn mrna
8
protein expression
8
apn
7
adiponectin protects
4
protects uric
4
uric acid‑induced
4
acid‑induced renal
4

Similar Publications

Naringenin has the potential to regulate ferroptosis and mitigate renal damage in diabetic nephropathy (DN). However, it remains unclear whether the naringenin's effects in DN are linked to its ability to regulate ferroptosis. This study investigated the potential anti-ferroptosis properties of naringenin in high glucose (HG)-induced renal tubular epithelial cell models.

View Article and Find Full Text PDF

Renal fibrosis (RF) is a crucial pathological factor in the progression of chronic kidney disease (CKD) to end-stage renal failure, and accurate and noninvasive assays to monitor the progression of renal fibrosis are needed. Circular RNAs (circRNAs) are noncoding RNAs that can be used as diagnostic biomarkers and therapeutic targets for human diseases. In this study, we analysed the expression of hsa_circ_0008925 in human urinary renal tubular cells and investigated its role in renal fibrosis.

View Article and Find Full Text PDF

Acute kidney injury (AKI) has been reported to occur in 30-70% of asphyxiated neonates. Hydrogen (H) gas became a major research focus in neonatal medicine after the identification of its robust antioxidative properties. However, the ability of H gas to ameliorate AKI is unknown.

View Article and Find Full Text PDF

IL-33, a neutrophil extracellular trap-related gene involved in the progression of diabetic kidney disease.

Inflamm Res

January 2025

Department of Nephrology, First Affiliated Hospital of Naval Medical University, Shanghai Changhai Hospital, Shanghai, China.

Background: Chronic inflammation is well recognized as a key factor related to renal function deterioration in patients with diabetic kidney disease (DKD). Neutrophil extracellular traps (NETs) play an important role in amplifying inflammation. With respect to NET-related genes, the aim of this study was to explore the mechanism of DKD progression and therefore identify potential intervention targets.

View Article and Find Full Text PDF

Proteinuria and tubular cells: Plasticity and toxicity.

Acta Physiol (Oxf)

February 2025

Department of Medicine, Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland.

Aim: Proteinuria is the most robust predictive factors for the progression of chronic kidney disease (CKD), and interventions targeting proteinuria reduction have shown to be the most effective nephroprotective treatments to date. While glomerular dysfunction is the primary source of proteinuria, its consequences extend beyond the glomerulus and have a profound impact on tubular epithelial cells. Indeed, proteinuria induces notable phenotypic changes in tubular epithelial cells and plays a crucial role in driving CKD progression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!