Polydimethylsiloxane (PDMS) silicone is a versatile polymer that cannot readily be formed into long filaments. Traditional spinning methods fail because PDMS does not exhibit long-range fluidity at melting. We introduce an improved method to produce filaments of PDMS by a stepped temperature profile of the polymer as it cross-links from a fluid to an elastomer. By monitoring its warm-temperature viscosity, we estimate a window of time when its material properties are amendable to drawing into long filaments. The filaments pass through a high-temperature tube oven, curing them sufficiently to be harvested. These filaments are on the order of hundreds of micrometers in diameter and tens of centimeters in length, and even longer and thinner filaments are possible. These filaments retain many of the material properties of bulk PDMS, including switchable hydrophobicity. We demonstrate this capability with an automated corona-discharge patterning method. These patternable PDMS silicone filaments have applications in silicone weavings, gas-permeable sensor components, and model microscale foldamers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3791/58826 | DOI Listing |
Nanotechnology
January 2025
Department of Physics, Shanghai Jiao Tong University, 800 Dong Chuan Road, Minhang Area, Shanghai 200240, Shanghai, 200240, CHINA.
Both stability and multi-level switching are crucial performance aspects for resistive random-access memory (RRAM), each playing a significant role in improving overall device performance. In this study, we successfully integrate these two features into a single RRAM configuration by embedding Ag-nanoparticles (Ag-NPs) into the TiN/Ta2O5/ITO structure. The device exhibits substantially lower switching voltages, a larger switching ratio, and multi-level switching phenomena compared to many other nanoparticle-embedded devices.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, and MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR 999078, China.
Despite the development of various controlled release systems for antitumor therapies, off-target side effects remain a persistent challenge. In situ therapeutic synthesis from biocompatible substances offers a safer and more precise alternative. This study presents a hypoxia-initiated supramolecular free radical system capable of inducing intracellular polymerization, thereby disrupting the cytoskeleton and organelles within 4T1 cells.
View Article and Find Full Text PDFPLoS Genet
January 2025
Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada.
The synaptonemal complex (SC) is a protein-rich structure essential for meiotic recombination and faithful chromosome segregation. Acting like a zipper to paired homologous chromosomes during early prophase I, the complex is a symmetrical structure where central elements are connected on two sides by the transverse filaments to the chromatin-anchoring lateral elements. Despite being found in most major eukaryotic taxa implying a deeply conserved evolutionary origin, several components of the complex exhibit unusually high rates of sequence turnover.
View Article and Find Full Text PDFMicrosc Microanal
January 2025
The Laboratory for Biomolecular Structures, Brookhaven National Laboratory, Upton, NY 11973, USA.
Mitochondrial division is a fundamental biological process essensial for cellular functionality and vitality. The prevailing hypothesis that dynamin related protein 1 (Drp1) provides principal control in mitochondrial division, in which it also involves the endoplasmic reticulum (ER) and the cytoskeleton, does not account for all the observations. Therefore.
View Article and Find Full Text PDFJ Proteome Res
January 2025
Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain.
As part of the intestinal microbiota, can elicit a humoral response in the gastrointestinal tract (GIT) that is mainly directed toward hyphal antigens. This response has been implicated in controlling the invasive form of the fungus and maintaining the yeast as an innocuous commensal. However, the specific targets of this response are still unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!