Neurodevelopmental disorders, including autism spectrum disorder, are common in children and adolescents, but treatment strategies remain limited. Although repetitive transcranial magnetic stimulation has been studied for neurodevelopmental disorders, there is no clear consensus on its therapeutic effects. This systematic review examined literature on repetitive transcranial magnetic stimulation for children and adolescents with neurodevelopmental disorders published up to 2018 using the PubMed database. The search identified 264 articles and 14 articles met eligibility criteria. Twelve of these studies used conventional repetitive transcranial magnetic stimulation and two studies used theta burst stimulation. No severe adverse effects were reported in these studies. In patients with autism spectrum disorder, low-frequency repetitive transcranial magnetic stimulation and intermittent theta burst stimulation applied to the dorsolateral prefrontal cortex may have therapeutic effects on social functioning and repetitive behaviors. In patients with attention deficit/hyperactivity disorder, low-frequency repetitive transcranial magnetic stimulation applied to the left dorsolateral prefrontal cortex and high-frequency repetitive transcranial magnetic stimulation applied to the right dorsolateral prefrontal cortex may target inattention, hyperactivity, and impulsivity. In patients with tic disorders, low-frequency repetitive transcranial magnetic stimulation applied to the bilateral supplementary motor area improved tic symptom severity. This systematic review suggests that repetitive transcranial magnetic stimulation may be a promising intervention for children and adolescents with neurodevelopmental disorders. The results warrant further large randomized controlled trials of repetitive transcranial magnetic stimulation in children with neurodevelopmental disorders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/1362361318822502 | DOI Listing |
Repetitive TMS (rTMS) is a powerful neuroscientific tool with the potential to noninvasively identify brain-behavior relationships in humans. Early work suggested that certain rTMS protocols (e.g.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Chungnam National University Hospital, Daejeon, Korea, Republic of (South).
Background: Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive emerging tool to modulate brain activities and functional connectivity in various neuropsychiatric disorders. rTMS combined with cognitive training (rTMS-COG) has been showing cognitive enhancing effects compared to those of placebo in mild Alzheimer's disease (AD) in some previous studies. However, there is not much research to conclude how much each rTMS or COG contributes to therapeutic cognitive effects.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Medical University of South Carolina, Charleston, SC, USA.
Background: Repetitive transcranial magnetic stimulation enhances cognition in people with mild cognitive impairment (MCI). Whereas conventional treatment requires daily sessions for 4-6 weeks, accelerated intermittent theta burst stimulation (iTBS) shortens the treatment course to just 3 days, substantially improving feasibility of use in people with MCI. We conducted a Phase I safety and feasibility trial of iTBS in MCI, finding preliminary evidence of cognitive improvement.
View Article and Find Full Text PDFNeurorehabil Neural Repair
January 2025
Institute for Health and Sport (IHeS), Victoria University, Melbourne, VIC, Australia.
Non-invasive brain stimulation (NIBS) is sometimes used alongside medication to alleviate motor symptoms in people with Parkinson's disease (PD). However, the evidence supporting NIBS's effectiveness for improving motor function in PD patients is uncertain. .
View Article and Find Full Text PDFSci Adv
January 2025
Experimental and Regenerative Neurosciences, The University of Western Australia, Perth, Australia.
Repetitive transcranial magnetic stimulation (rTMS) is commonly used to study the brain or as a treatment for neurological disorders, but the neural circuits and molecular mechanisms it affects remain unclear. To determine the molecular mechanisms of rTMS and the brain regions they occur in, we used spatial transcriptomics to map changes to gene expression across the mouse brain in response to two commonly used rTMS protocols. Our results revealed that rTMS alters the expression of genes related to several cellular processes and neural plasticity mechanisms across the brain, which was both brain region- and rTMS protocol-dependent.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!