Photoacoustic (optoacoustic) imaging can extract molecular information with deeper tissue penetration than possible by fluorescence microscopy techniques. However, there is currently still a lack of robust genetically controlled contrast agents and molecular sensors that can dynamically detect biological analytes of interest with photoacoustics. In a biomimetic approach, we took inspiration from cuttlefish who can change their color by relocalizing pigment-filled organelles in so-called chromatophore cells under neurohumoral control. Analogously, we tested the use of melanophore cells from Xenopus laevis, containing compartments (melanosomes) filled with strongly absorbing melanin, as whole-cell sensors for optoacoustic imaging. Our results show that pigment relocalization in these cells, which is dependent on binding of a ligand of interest to a specific G protein-coupled receptor (GPCR), can be monitored in vitro and in vivo using photoacoustic mesoscopy. In addition to changes in the photoacoustic signal amplitudes, we could furthermore detect the melanosome aggregation process by a change in the frequency content of the photoacoustic signals. Using bioinspired engineering, we thus introduce a photoacoustic pigment relocalization sensor (PaPiReS) for molecular photoacoustic imaging of GPCR-mediated signaling molecules.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6434508PMC
http://dx.doi.org/10.1021/acssensors.8b01319DOI Listing

Publication Analysis

Top Keywords

pigment relocalization
12
optoacoustic imaging
8
photoacoustic
6
whole-cell photoacoustic
4
photoacoustic sensor
4
sensor based
4
based pigment
4
relocalization photoacoustic
4
photoacoustic optoacoustic
4
imaging extract
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!