Kinetic and mechanistic studies of p38α MAP kinase phosphorylation by MKK6.

FEBS J

Key Laboratory of Ministry of Education for Protein Science, School of Life Sciences, Tsinghua University, Beijing, China.

Published: March 2019

Bistability (coexistence of two stable steady states in a dynamical system) is a key mechanism of cellular decision-making and has been observed in many biochemical reaction networks such as mitogen-activated protein kinase (MAPK) signaling pathways. Theoretical studies have shown that bistability can arise in a single two-site MAPK phosphorylation and dephosphorylation cycle. However, the bistable behavior mostly relies on the kinetic mechanisms and parameters of this two-site modification. In exploring the system-level properties of MAPK regulation, most models to date focus on two limiting reaction regimes, distributive and processive, and are characterized by high levels of parametric uncertainty. Here, we developed a combined kinetic method which applies a continuous spectrophotometric enzyme-coupled assay incorporated with the viscosity approach, to perform detailed kinetic analyses of p38α MAPK dual phosphorylation by MKK6. Almost all kinetic rate constants for the first and second phosphorylation steps in p38α activation have been quantitatively determined, supporting that the phosphorylation occurs randomly in the first step, albeit preferring the tyrosine residue. The release rates of monophosphorylated p38α from MKK6, either as the product in the first modification or as the substrate in the second step, were comparable to the respective adjacent phosphoryl transfer steps. These results indicated that dual phosphorylation of p38α by MKK6 involves a random, partially processive mechanism. Based on the experimentally determined models and parameters, dynamics of the p38α-MKK6-MKP5 system were explored, demonstrating for the first time that bistability can arise with this model at biologically feasible parameter values. ENZYMES: p38α (EC 2.7.11.24); MKK6 (EC 2.7.12.2).

Download full-text PDF

Source
http://dx.doi.org/10.1111/febs.14762DOI Listing

Publication Analysis

Top Keywords

phosphorylation mkk6
8
dual phosphorylation
8
p38α mkk6
8
p38α
6
phosphorylation
6
kinetic
5
mkk6
5
kinetic mechanistic
4
mechanistic studies
4
studies p38α
4

Similar Publications

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the presence of β-amyloid (Aβ)-containing extracellular neuritic plaques and phosphorylated tau-containing intracellular neurofibrillary tangles. It remains the primary neuropathological criteria for the diagnosis of AD. Additionally, several other processes are currently being recognized as significant risk factors for AD development, including the brain's susceptibility to reactive oxygen species (ROS).

View Article and Find Full Text PDF

The mitogen-activated protein kinase (MAPK) p38α is a central component of signaling in inflammation and the immune response and is, therefore, an important drug target. Little is known about the molecular mechanism of its activation by double phosphorylation from MAPK kinases (MAP2Ks), because of the challenge of trapping a transient and dynamic heterokinase complex. We applied a multidisciplinary approach to generate a structural model of p38α in complex with its MAP2K, MKK6, and to understand the activation mechanism.

View Article and Find Full Text PDF

Increasing evidence supports the therapeutic potential of rare cannabis-derived phytocannabinoids (pCBs) in skin disorders such as atopic dermatitis, psoriasis, pruritus, and acne. However, the molecular mechanisms of the biological action of these pCBs remain poorly investigated. In this study, an experimental model of inflamed human keratinocytes (HaCaT cells) was set up by using lipopolysaccharide (LPS) in order to investigate the anti-inflammatory effects of the rare pCBs cannabigerol (CBG), cannabichromene (CBC), Δ-tetrahydrocannabivarin (THCV) and cannabigerolic acid (CBGA).

View Article and Find Full Text PDF

Essential functions of mitogen-activated protein kinases (MAPKs) depend on their capacity to selectively phosphorylate a limited repertoire of substrates. MAPKs harbor a conserved groove located outside of the catalytic cleft that binds to short linear sequence motifs found in substrates and regulators. However, the weak and transient nature of these "docking" interactions poses a challenge to defining MAPK interactomes and associated sequence motifs.

View Article and Find Full Text PDF

Computational screening for new neuroprotective ingredients against Alzheimer's disease from bilberry by cheminformatics approaches.

Front Nutr

December 2022

Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, School of Food Science and Engineering, National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry and Technology, Changsha, China.

Bioactive ingredients from natural products have always been an important resource for the discovery of drugs for Alzheimer's disease (AD). Senile plaques, which are formed with amyloid-beta (Aβ) peptides and excess metal ions, are found in AD brains and have been suggested to play an important role in AD pathogenesis. Here, we attempted to design an effective and smart screening method based on cheminformatics approaches to find new ingredients against AD from (bilberry) and verified the bioactivity of expected ingredients through experiments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!