Two series of fluorinated chalcones containing morpholine and imidazole-based compounds (f1-f8) were synthesized and evaluated for recombinant human monoamine oxidase (MAO)-A and -B as well as acetylcholinesterase inhibitory activities. Our results indicate that morpholine containing chalcones are highly selective MAO-B inhibitors having reversibility properties. All the imidazole-based fluorinated chalcones showed weak MAO inhibitions in both isoforms. Among the tested compounds, (2E)-3-(3-fluorophenyl)-1-[4-(morpholin-4-yl)phenyl]prop-2-en-1-one (f2) showed potent inhibitory activity for recombinant human MAO-B (IC = 0.087 μM) with a high selectivity index (SI) of 517.2. In the recovery experiments using dialysis, the residual activity of MAO-B inhibited by f2 was close to that with the reversible reference inhibitor. Inhibition assays revealed that the K values of f1 and f2 for MAO-B were 0.027 and 0.020 μM, respectively, with competitive patterns. All the morpholine-based compounds (f1-f4) showed moderate inhibition toward acetylcholinesterase with IC values ranging between 24 and 54 μM. All morpholine-containing compounds exhibit good blood-brain barrier permeation in the PAMPA method. The rational approach regarding the highly selective MAO-B inhibitor f2 was further ascertained by induced fit docking and molecular dynamics simulation studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ardp.201800309 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!