Inversion of a large-scale circuit model reveals a cortical hierarchy in the dynamic resting human brain.

Sci Adv

Department of Electrical and Computer Engineering, ASTAR-NUS Clinical Imaging Research Centre, Singapore Institute for Neurotechnology and Memory Networks Program, National University of Singapore, Singapore, Singapore.

Published: January 2019

We considered a large-scale dynamical circuit model of human cerebral cortex with region-specific microscale properties. The model was inverted using a stochastic optimization approach, yielding markedly better fit to new, out-of-sample resting functional magnetic resonance imaging (fMRI) data. Without assuming the existence of a hierarchy, the estimated model parameters revealed a large-scale cortical gradient. At one end, sensorimotor regions had strong recurrent connections and excitatory subcortical inputs, consistent with localized processing of external stimuli. At the opposing end, default network regions had weak recurrent connections and excitatory subcortical inputs, consistent with their role in internal thought. Furthermore, recurrent connection strength and subcortical inputs provided complementary information for differentiating the levels of the hierarchy, with only the former showing strong associations with other macroscale and microscale proxies of cortical hierarchies (meta-analysis of cognitive functions, principal resting fMRI gradient, myelin, and laminar-specific neuronal density). Overall, this study provides microscale insights into a macroscale cortical hierarchy in the dynamic resting brain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6326747PMC
http://dx.doi.org/10.1126/sciadv.aat7854DOI Listing

Publication Analysis

Top Keywords

subcortical inputs
12
circuit model
8
cortical hierarchy
8
hierarchy dynamic
8
dynamic resting
8
recurrent connections
8
connections excitatory
8
excitatory subcortical
8
inputs consistent
8
inversion large-scale
4

Similar Publications

Cyclooxygenase-2 (COX-2) is present in a healthy brain at low densities but can be markedly upregulated by excitatory input and by inflammogens. This study evaluated the sensitivity of the PET radioligand [C]-6-methoxy-2-(4-(methylsulfonyl)phenyl)--(thiophen-2-ylmethyl)pyrimidin-4-amine ([C]MC1) to detect COX-2 density in a healthy human brain. The specificity of [C]MC1 was confirmed using lipopolysaccharide-injected rats and transgenic mice expressing the human gene, with 120-min baseline and blocked scans using COX-1 and COX-2 selective agents.

View Article and Find Full Text PDF

Auditory processing in the cerebral cortex is considered to begin with thalamocortical inputs to layer 4 (L4) of the primary auditory cortex (A1). In this canonical model, A1 L4 inputs initiate a hierarchical cascade, with higher-order cortices receiving pre-processed information for the slower integration of complex sounds. Here, we identify alternative ascending pathways in mice that bypass A1 and directly reach multiple layers of the secondary auditory cortex (A2), indicating parallel activation of these areas alongside sequential information processing.

View Article and Find Full Text PDF

Post-stroke spasticity (PSS), characterized by a velocity-dependent increase in muscle tone and exaggerated reflexes, affects a significant portion of stroke patients and presents a substantial obstacle to post-stroke rehabilitation. Effective management and treatment for PSS remains a significant clinical challenge in the interdisciplinary aspect depending on the understanding of its etiologies and pathophysiology. We systematically review the relevant literature and provide the main pathogenic hypotheses: alterations in the balance of excitatory and inhibitory inputs to the descending pathway or the spinal circuit, which are secondary to cortical and subcortical ischemic or hemorrhagic injury, lead to disinhibition of the stretch reflex and increased muscle tone.

View Article and Find Full Text PDF

Purpose: Objective information about the central auditory pathways in vestibular schwannoma can guide strategies for hearing rehabilitation and prognostication. This study aims to generate this information using diffusion tensor imaging (DTI).

Methods: This is a prospective observational single center study including 35 patients with vestibular schwannoma and 40 controls.

View Article and Find Full Text PDF

Visual hallucinations (VH) and pareidolia, a type of minor hallucination, share common underlying mechanisms. However, the similarities and differences in their brain regions remain poorly understood in Parkinson's disease (PD). A total of 104 drug-naïve PD patients underwent structural MRI and were assessed for pareidolia using the Noise Pareidolia Test (NPT) were enrolled.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!