α-Mangostin (αMG) is a natural substance that exerts a wide range of antitumor effects. Recently, we described that free αMG was able to dissociate multicellular tumour spheroids (MCTSs) generated from breast carcinoma cells and to reduce their cellular viability and motility. Here, αMG was encapsulated into lipidic nanoparticles (NPs), conjugated or not to a CD44 thioaptamer, and the anticancer action evaluated against MCF-7 breast MCTSs. NPs containing αMG were formulated with a core of polylactic-co-glycolyc acid. Some of them were decorated with a CD44 thioaptamer using as catalysts 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide. Both size and density of MCF-7-derived MCTSs were monitored during 72 h of treatment with NPs carrying 0.1, 0.5 and 1.0 μg/ml final concentrations of αMG. MCTSs were cultured on Matrigel or gelatine to better simulate the extracellular environment. The NPs without thioaptamer and conveying 0.1 μg/ml αMG caused a significant dissociation of the MCTSs grown in gelatine after 24 h of treatment (p < 0.01). The most significant disaggregation of MCTSs was obtained using NPs carrying 0.5 μg/ml αMG (p < 0.01). A similar dissociating effect was observed when MCTSs were cultured in Matrigel under the same conditions for 48 - 72 h. By contrast, only concentrations over 1.0 μg/ml of free αMG were able to provoke a damage to MCTSs, consisting in a substantial reduction in their size (p < 0.05). Since the MCTS dissociation induced by αMG-loaded NPs occurred only in the presence of Matrigel or gelatine, an impairment of cell contacts to collagen fibres was likely responsible of this effect. Finally, the treatment of MCTSs with αMG-loaded NPs that were conjugated to the CD44 thioaptamer caused a similar decrease in density but a lower expansion of the spheroid, suggesting that a significant number of cells were died or arrested in cycle. Very low concentrations of αMG delivered by lipidic NPs are sufficient to provoke a substantial disaggregation of MCF-7 MCTSs that involves cell-to-collagen contacts. Similarly, the treatment of MCTSs with NPs conjugated to a CD44 thioaptamer leads to MCTS dissociation but through a more damaging action that causes also a reduction in cell number.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6332479 | PMC |
http://dx.doi.org/10.7150/ijms.28135 | DOI Listing |
J Control Release
September 2022
Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston, TX, USA. Electronic address:
We describe a role of CD44-mediated signaling during host-defense against tuberculosis (TB) using a mouse model of TB and studies in M. tuberculosis (Mtb) infected human macrophage (MФ). Liposomes targeting CD44 using thioaptamers (CD44TA-LIP) were designed and tested as new vaccines to boost host immunity in TB.
View Article and Find Full Text PDFInt J Med Sci
April 2019
Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy.
α-Mangostin (αMG) is a natural substance that exerts a wide range of antitumor effects. Recently, we described that free αMG was able to dissociate multicellular tumour spheroids (MCTSs) generated from breast carcinoma cells and to reduce their cellular viability and motility. Here, αMG was encapsulated into lipidic nanoparticles (NPs), conjugated or not to a CD44 thioaptamer, and the anticancer action evaluated against MCF-7 breast MCTSs.
View Article and Find Full Text PDFJ Control Release
November 2017
Department of Nanomedicine, Houston Methodist Research Institute, TX 77030, United States. Electronic address:
Worldwide, tuberculosis (TB) remains one of the most prevalent infectious diseases causing morbidity and death in >1.5 million patients annually. Mycobacterium tuberculosis (Mtb), the etiologic agent of TB, usually resides in the alveolar macrophages.
View Article and Find Full Text PDFMol Ther Nucleic Acids
December 2016
University of Oklahoma Health Sciences Center, Stephenson Cancer Center, Oklahoma City, Oklahoma, USA.
J Drug Target
October 2016
a Department of General Surgery , Wuhan General Hospital of Guangzhou Military Command Region, Wuhan , People's Republic of China .
The high transfection efficiency and enhanced therapeutic effect of drug delivery systems developed in recent years imply that ligand-decorated nanocarriers are potentially targeted vectors for breast cancer treatment. Thioaptamer (TA)-modified nanoparticles (NPs) designed in this study mainly consisted of ligand TA and dendritic polyamidoamine (PAMAM). Knowing that TA can bind to CD44-receptors in breast cancer, this study was intended to validate the safety and feasibility of systemic miRNA delivery to breast cancer cells by TA-PEG-PAMAM/miRNA (polyethylene glycol - PEG), testify its tumor targeting efficiency in vitro, and observe its biodistribution when it was administered systemically to a xenograft mouse model of breast cancer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!