AI Article Synopsis

  • - Notch3 signaling plays a significant role in the survival and prognosis of osteosarcoma, with higher expression linked to worse patient outcomes based on an analysis of 70 cases.
  • - Experimental studies in osteosarcoma cell lines show that silencing Notch3 leads to reduced cell viability, impaired wound healing, and decreased levels of the invasion-related proteins Hes1 and MMP7.
  • - In animal models, knocking down Notch3 resulted in less pulmonary metastasis, suggesting that Notch3 influences osteosarcoma progression via the MMP7 pathway.

Article Abstract

Background: Notch signaling abnormalities are associated with the development of various tumors, including hematopoietic and epithelium-derived tumors. However, the role of Notch signaling in tumors originating from mesenchymal cells is unclear. The effect of Notch3 expression on the prognosis of osteosarcoma and its role and mechanism in osteosarcoma cells have never been reported.

Materials And Methods: In this study, we performed a clinicopathological analysis of 70 cases of osteosarcoma, with primary focus on survival. Osteosarcoma cell lines MTH and U2OS were used. After knockdown of Notch3 by lentiviral transfection and siRNA, the cell cycle, cell viability, and wound healing capacity were assessed. Subsequently, the Transwell assay was performed, and the expression levels of hairy and enhancer of split-1 (Hes1) and matrix metalloproteinase 7 (MMP7) were detected by RT-PCR and Western blot assay. The expression of MMP7 was also detected after knockdown of Hes1. Animal experiments were performed by injecting the cell lines MTH of Notch3 knockdown into mice tail veins and comparing the development of lung metastasis with the control group.

Results: Comparison of survival curves showed that Notch3 expression significantly impacts patient survival. Additionally, multivariate analysis revealed that Notch3 is an independent prognostic factor for osteosarcoma. In in vivo experiments, osteosarcoma-associated pulmonary metastasis in nude mice was reduced after Notch3 silencing. The expression of downstream effector molecule, Hes1, and that of the invasion and metastasis-associated proteolytic enzyme, MMP7, were reduced, and MMP7 was further decreased by Hes1 knockdown in in vitro experiments.

Conclusion: Notch3 is a prognostic factor for osteosarcoma and might regulate its invasion and metastasis through the downstream target gene and effector MMP7.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6329347PMC
http://dx.doi.org/10.2147/CMAR.S185495DOI Listing

Publication Analysis

Top Keywords

prognosis osteosarcoma
8
notch signaling
8
notch3 expression
8
cell lines
8
lines mth
8
mmp7 detected
8
prognostic factor
8
factor osteosarcoma
8
osteosarcoma
7
notch3
7

Similar Publications

KDELR1 regulates chondrosarcoma drug resistance and malignant behavior through Intergrin-Hippo-YAP1 axis.

Cell Death Dis

December 2024

Spinal Tumor Center, Department of Orthopaedic Oncology, No.905 Hospital of PLA Navy, Changzheng Hospital, Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, China.

Chondrosarcoma (CS) is the second most common primary bone malignancy, known for its unique transcriptional landscape that renders most CS subtypes resistant to chemotherapy, including neoadjuvant chemotherapy commonly used in osteosarcoma (OS) treatment. Understanding the transcriptional landscape of CS and the mechanisms by which key genes contribute to chemotherapy resistance could be a crucial step in overcoming this challenge. To address this, we developed a single-cell transcriptional map of CS, comparing it with OS and normal cancellous bone.

View Article and Find Full Text PDF

Osteosarcoma (OS) is the most common primary malignant bone tumor in childhood. Patients who present with metastatic disease at diagnosis or relapse have a very poor prognosis, and this has not changed over the past four decades. The Wnt signaling pathway plays a role in regulating osteogenesis and is implicated in OS pathogenesis.

View Article and Find Full Text PDF

Background: Osteosarcoma is a malignant tumor originating from mesenchymal bone tissue, characterized by high malignancy and poor prognosis. Despite progress in comprehensive treatment approaches, the five-year survival rate remains largely unchanged, highlighting the need to clarify its underlying mechanisms and discover new therapeutic targets.

Methods: This study utilized RNA sequencing data from multiple public databases, encompassing osteosarcoma samples and healthy controls, along with single-cell RNA sequencing data.

View Article and Find Full Text PDF

Update on Conventional Osteosarcoma.

Rev Bras Ortop (Sao Paulo)

December 2024

Grupo de Oncologia Pediátrico, Hospital das Clínicas, Belo Horizonte, MG, Brasil.

Conventional osteosarcoma is a high-grade malignant tumor characterized by the production of osteoid matrix by malignant osteoblasts. It typically affects the long bones of children and adolescents. Treatment includes systemic chemotherapy and a local surgical approach with wide resection.

View Article and Find Full Text PDF

Background: Osteosarcoma, the most prevalent primary bone malignancy in children and adolescents, exhibits high heterogeneity. The CGREF1 gene encodes a novel 301 amino acid classical secreted protein that contains the presumed N-terminal signaling peptide and EF hand motif. However, its role in osteosarcoma remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: