Acquisition of Dynamic Function in Human Stem Cell-Derived β Cells.

Stem Cell Reports

Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, Campus Box 8127, 660 South Euclid Avenue, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130, USA. Electronic address:

Published: February 2019

Recent advances in human pluripotent stem cell (hPSC) differentiation protocols have generated insulin-producing cells resembling pancreatic β cells. While these stem cell-derived β (SC-β) cells are capable of undergoing glucose-stimulated insulin secretion (GSIS), insulin secretion per cell remains low compared with islets and cells lack dynamic insulin release. Herein, we report a differentiation strategy focused on modulating transforming growth factor β (TGF-β) signaling, controlling cellular cluster size, and using an enriched serum-free media to generate SC-β cells that express β cell markers and undergo GSIS with first- and second-phase dynamic insulin secretion. Transplantation of these cells into mice greatly improves glucose tolerance. These results reveal that specific time frames for inhibiting and permitting TGF-β signaling are required during SC-β cell differentiation to achieve dynamic function. The capacity of these cells to undergo GSIS with dynamic insulin release makes them a promising cell source for diabetes cellular therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6372986PMC
http://dx.doi.org/10.1016/j.stemcr.2018.12.012DOI Listing

Publication Analysis

Top Keywords

insulin secretion
12
dynamic insulin
12
dynamic function
8
stem cell-derived
8
cells
8
sc-β cells
8
insulin release
8
tgf-β signaling
8
undergo gsis
8
cell
5

Similar Publications

Background: Glucagon-like peptide-1 (GLP-1) is a crucial incretin hormone secreted by intestinal endocrine L cells. Given its pivotal physiological role, researchers have developed GLP-1 receptor agonists (GLP-1 RAs) through structural modifications. These analogues display pharmacological effects similar to those of GLP-1 but with augmented stability and are regarded as an effective means of regulating blood glucose levels in clinical practice.

View Article and Find Full Text PDF

Unlabelled: Growth hormone (GH) plays a crucial role in various physiological functions, with its secretion tightly regulated by complex endocrine mechanisms. Pathological conditions such as acromegaly or pituitary tumors result in elevated circulating GH levels, which have been implicated in a spectrum of metabolic disorders, potentially by regulating liver metabolism. In this study, we focused on the liver, a key organ in metabolic regulation and a primary target of GH, to investigate the impact of high circulating GH on liver metabolism.

View Article and Find Full Text PDF

The dipeptide Tyr-Pro, a novel natural agonist of adiponectin receptor 1 (AdipoR1), promotes glucose uptake in skeletal muscle cells. This study investigated the antidiabetic effect of orally administered Tyr-Pro in spontaneously diabetic Torii (SDT) rats. Oral administration of Tyr-Pro (1 mg/kg/day) improved glucose intolerance in SDT rats at 22 weeks of prediabetic age.

View Article and Find Full Text PDF

Aim: To describe the effects of Glucagon-like peptide-1 receptor agonists (GLP-1RA) in patients with familial partial lipodystrophy (FPLD) assessed in a real-life setting in a national reference network.

Patients And Methods: We retrospectively collected clinical and metabolic parameters in patients with FPLD in the French lipodystrophy reference network, who initiated GLP-1RA. Data were recorded before, at one-year (12 ± 6 months) and at the latest follow-up on GLP-1RA therapy (≥18 months).

View Article and Find Full Text PDF

Aims/introduction: Metformin treatment for hyperglycemia in pregnancy (HIP) beneficially improves maternal glucose metabolism and reduces perinatal complications. However, metformin could impede pancreatic β cell development via impaired mitochondrial function. A new anti-diabetes drug imeglimin, developed based on metformin, improves mitochondrial function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!