FOXO3-Engineered Human ESC-Derived Vascular Cells Promote Vascular Protection and Regeneration.

Cell Stem Cell

National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China; Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Brain Disorders, Beijing 100069, China. Electronic address:

Published: March 2019

FOXO3 is an evolutionarily conserved transcription factor that has been linked to longevity. Here we wanted to find out whether human vascular cells could be functionally enhanced by engineering them to express an activated form of FOXO3. This was accomplished via genome editing at two nucleotides in human embryonic stem cells, followed by differentiation into a range of vascular cell types. FOXO3-activated vascular cells exhibited delayed aging and increased resistance to oxidative injury compared with wild-type cells. When tested in a therapeutic context, FOXO3-enhanced vascular cells promoted vascular regeneration in a mouse model of ischemic injury and were resistant to tumorigenic transformation both in vitro and in vivo. Mechanistically, constitutively active FOXO3 conferred cytoprotection by transcriptionally downregulating CSRP1. Taken together, our findings provide mechanistic insights into FOXO3-mediated vascular protection and indicate that FOXO3 activation may provide a means for generating more effective and safe biomaterials for cell replacement therapies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.stem.2018.12.002DOI Listing

Publication Analysis

Top Keywords

vascular cells
16
vascular
8
vascular protection
8
cells
6
foxo3-engineered human
4
human esc-derived
4
esc-derived vascular
4
cells promote
4
promote vascular
4
protection regeneration
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!