Sub-nucleosomal Genome Structure Reveals Distinct Nucleosome Folding Motifs.

Cell

Laboratory for Cell Systems Control, RIKEN Center for Biosystems Dynamics Research, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan; PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan. Electronic address:

Published: January 2019

Elucidating the global and local rules that govern genome-wide, hierarchical chromatin architecture remains a critical challenge. Current high-throughput chromosome conformation capture (Hi-C) technologies have identified large-scale chromatin structural motifs, such as topologically associating domains and looping. However, structural rules at the smallest or nucleosome scale remain poorly understood. Here, we coupled nucleosome-resolved Hi-C technology with simulated annealing-molecular dynamics (SA-MD) simulation to reveal 3D spatial distributions of nucleosomes and their genome-wide orientation in chromatin. Our method, called Hi-CO, revealed distinct nucleosome folding motifs across the yeast genome. Our results uncovered two types of basic secondary structural motifs in nucleosome folding: α-tetrahedron and β-rhombus analogous to α helix and β sheet motifs in protein folding. Using mutants and cell-cycle-synchronized cells, we further uncovered motifs with specific nucleosome positioning and orientation coupled to epigenetic features at individual loci. By illuminating molecular-level structure-function relationships in eukaryotic chromatin, our findings establish organizational principles of nucleosome folding.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cell.2018.12.014DOI Listing

Publication Analysis

Top Keywords

nucleosome folding
16
distinct nucleosome
8
folding motifs
8
structural motifs
8
nucleosome
6
motifs
6
folding
5
sub-nucleosomal genome
4
genome structure
4
structure reveals
4

Similar Publications

Thermodynamics of nucleosome breathing and positioning.

J Chem Phys

January 2025

Department of Physics and Astronomy and Center for Quantitative Biology, Rutgers University, Piscataway, New Jersey 08854, USA.

Nucleosomes are fundamental units of chromatin in which a length of genomic DNA is wrapped around a histone octamer spool in a left-handed superhelix. Large-scale nucleosome maps show a wide distribution of DNA wrapping lengths, which in some cases are tens of base pairs (bp) shorter than the 147 bp canonical wrapping length observed in nucleosome crystal structures. Here, we develop a thermodynamic model that assumes a constant free energy cost of unwrapping a nucleosomal bp.

View Article and Find Full Text PDF

Eukaryotic DNA is packaged in the cell nucleus into chromatin, composed of arrays of DNA-histone protein octamer complexes, the nucleosomes. Over the past decade, it has become clear that chromatin structure in vivo is not a hierarchy of well-organized folded nucleosome fibers but displays considerable conformational variability and heterogeneity. In vitro and in vivo studies, as well as computational modeling, have revealed that attractive nucleosome-nucleosome interaction with an essential role of nucleosome stacking defines chromatin compaction.

View Article and Find Full Text PDF

Unlabelled: Chromatin organization is essential for DNA packaging and gene regulation in eukaryotic genomes. While significant progresses have been made, the exact atomistic arrangement of nucleosomes remains controversial. Using a well-calibrated residue-level coarse-grained model and advanced dynamics modeling techniques, particularly the non-Markovian dynamics model, we map the free energy landscape of tetra-nucleosome systems, identify both metastable conformations and intermediate states in folding pathways, and quantify the folding kinetics.

View Article and Find Full Text PDF
Article Synopsis
  • - CTCF plays an essential role in shaping chromatin structure, which is important for gene regulation, but the specific ways this varies between different cell types are not completely understood.
  • - Research shows that differences in how CTCF binds to DNA, influenced by species-specific features and surrounding transcription factor motifs, affect chromatin accessibility and nucleosome arrangement in both mice and humans.
  • - The study highlights that individual transcription factors can either stabilize or destabilize CTCF binding in specific cell types, impacting the overall organization of chromatin over both short and long distances.
View Article and Find Full Text PDF

Introduction: Molecular chaperones and co-chaperones are highly conserved cellular components that perform a variety of duties related to the proper three-dimensional folding of the proteome. The web of factors that carries out this essential task is called the proteostasis network (PN). Ribonucleoproteins (RNPs) represent an underexplored area in terms of the connections they make with the PN.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!