Revealing the Dual Surface Reactions on a HE-NCM Li-Ion Battery Cathode and Their Impact on the Surface Chemistry of the Counter Electrode.

ACS Appl Mater Interfaces

Karlsruhe Nano Micro Facility , Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1 , 76344 Eggenstein-Leopoldshafen , Germany.

Published: February 2019

The understanding of surface reactions at the electrode-electrolyte interfaces has been a longstanding challenge in Li-ion batteries. X-ray photoemission electron microscopy is used to throw light on the disputed aspects of the surface reactivity of high-energy Li-rich Li(Ni Co Mn)O (HE-NCM) cycled in an aprotic electrolyte against LiTiO (LTO). Despite the highly oxidative potential of 5.1 V vs Li/Li, there is no formation of a layer of oxidized electrolyte byproducts on any of the cathode particles; instead, a homogeneous organic-inorganic layer builds up across the particles of the LTO anode due to the electrolyte and poly(vinylidene fluoride) binder decomposition on HE-NCM. In addition, such a layer incorporates, already from the first charge, micrometer-sized agglomerates of transition metals (TMs). The presence of TMs on the anode is explained by the instability of the reduced Mn, Co, and Ni formed at the surface of HE-NCM mainly during delithiation. The reduced TMs are unstable and prone to be transported to the LTO, where they get further reduced to metallic-like clusters. These results demonstrate that a dual reaction takes place at the HE-NCM-electrolyte interface if subject to high potential, namely, degradation of the surface structure and decomposition of the electrolyte, affecting directly the anode surface through the migration-diffusion processes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.8b19511DOI Listing

Publication Analysis

Top Keywords

surface reactions
8
surface
7
revealing dual
4
dual surface
4
he-ncm
4
reactions he-ncm
4
he-ncm li-ion
4
li-ion battery
4
battery cathode
4
cathode impact
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!