Morphologic spectrum of gluten-related disorders: how far to go?

Virchows Arch

Department of Pathology, Faculty of Medicine, Ankara University, Ankara, Turkey.

Published: May 2019

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00428-019-02522-yDOI Listing

Publication Analysis

Top Keywords

morphologic spectrum
4
spectrum gluten-related
4
gluten-related disorders
4
disorders go?
4
morphologic
1
gluten-related
1
disorders
1
go?
1

Similar Publications

DICER1-associated sarcoma is an emerging entity, defined by either somatic or germline dicer 1, ribonuclease III (DICER1) mutations and sharing characteristic morphologic features irrespective of the site of origin. In addition to the DICER1 driver mutation, concurrent genomic alterations, including tumor protein 53 (TP53) inactivation and RAS pathway activation, are frequently detected. Tumors that morphologically resemble malignant peripheral nerve sheath tumor (MPNST) have rarely been reported among DICER1 sarcomas and often pose diagnostic challenges.

View Article and Find Full Text PDF

Background: Differentiation of benign myxomas and malignant myxoid sarcomas can be difficult with an overlapping spectrum of morphologic MR findings.

Purpose: To assess the diagnostic utility of MRI radiomics in the differentiation of musculoskeletal myxomas and myxoid sarcomas.

Study Type: Retrospective.

View Article and Find Full Text PDF

Kiwifruit canker, caused by pv. (PSA), has led to significant losses in the kiwifruit industry each year. Due to the drug resistance feature of PSA, biological control is currently the most promising method.

View Article and Find Full Text PDF

Introduction: NUP98 rearrangements are rare in acute leukemias and portend a poor prognosis.

Methods: This study explored clinicopathologic and molecular features of five patients with NUP98 rearranged (NUP98-r) acute leukemias, including three females and two males with a median age of 34 years.

Results: NUP98 fusion partners were associated with distinctive leukemia characteristics and biology.

View Article and Find Full Text PDF

The PurR family transcriptional regulator promotes butenyl-spinosyn production in Saccharopolyspora pogona.

Appl Microbiol Biotechnol

January 2025

Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.

Butenyl-spinosyn, derived from Saccharopolyspora pogona, is a broad-spectrum and effective bioinsecticide. However, the regulatory mechanism affecting butenyl-spinosyn synthesis has not been fully elucidated, which hindered the improvement of production. Here, a high-production strain S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!