Danvatirsen is a Generation 2.5 antisense oligonucleotide under clinical development. Population PK modelling was conducted using data from 3 available danvatirsen Phase I/II studies in oncology patients to investigate the impact of flat dosing on exposure compared to ideal body weight-based dosing. A total of 126 patients who received danvatirsen doses ranging from 1 to 4 mg/kg as monotherapy or in combination with durvalumab, most at 3 mg/kg (n = 70), was used in the danvatirsen population PK analysis. A 2-compartment model with linear elimination described the data well. Covariate analysis revealed ideal body weight was not a significant covariate on the PK of danvatirsen; nor was age, sex or race. The model-based simulation suggested that steady state weekly AUC and Cmax were very similar between 3 mg/kg and 200 mg flat dosing (geometric mean of AUC: 62.5 vs. 63.4 mg h/L and Cmax: 26.2 vs. 26.5 mg/L for two dose groups) with slightly less overall between-subject variability in the flat dosing regimen. The switch to flat dosing was approved by multiple regulatory agencies, including FDA, EMA, PMDA and ANSM. Several ongoing studies have been evaluating flat dosing. Interim analysis from an ongoing study (D5660C00016, NCT03421353) has shown the observed steady state concentration from 200 mg flat dose is in agreement with the model predictions. The population PK model could be further utilized in subsequent exposure-response efficacy and safety modelling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10928-019-09619-6 | DOI Listing |
Injury
December 2024
Department of Orthopaedics, Larnaca General Hospital, State Health Services Organisation, Larnaca, Cyprus.
The purpose of this study was to establish typical dose values at orthopaedic operating rooms of the Larnaca General Hospital (LGH). Kerma area product (KAP), fluoroscopy time (FT) and cumulative air-kerma (K) measurements were collected for 821 patients who underwent common and reproducible trauma surgery over a five-year period, with three mobile C-arm systems; two equipped with an image-intensifier and one with a flat-panel detector. Dose indices were automatically extracted from radiation dose structured reports or DICOM meta-data files archived in the PACS, using custom-made software.
View Article and Find Full Text PDFEur J Radiol
December 2024
The Health Information and Quality Authority (HIQA), Unit 1301, City Gate, Mahon, Cork, T12 Y2xt Cork, Ireland. Electronic address:
Purpose: The purpose of this work was to establish national Irish diagnostic reference levels (DRLs) for a clinically representative and comprehensive list of clinical indications, anatomical regions, and common procedures for fluoroscopy and fluoroscopically guided interventions and compare these, where possible, to other DRLs established at a national level.
Method: A list of clinical indications, anatomical regions and common procedures was established. A national database of service providers was used to identify all medical radiological facilities providing fluoroscopy and fluoroscopically guided intervention services.
Diagnostics (Basel)
December 2024
Department of Electronics Engineering, Hankuk University of Foreign Studies, Gyeonggi-do, Yongin-si 17035, Republic of Korea.
Background: For a single exposure in radiography, a dual-layer flat-panel detector (DFD) can provide spectral images and efficiently utilize the transmitted X-ray photons to improve the detective quantum efficiency (DQE) performance. In this paper, to acquire high DQE performance, we present a registration method for X-ray images acquired from a DFD, considering only spatial translations and scale factors. The conventional registration methods have inconsistent estimate accuracies depending on the captured object scene, even when using entire pixels, and have deteriorated frequency performance because of the interpolation method employed.
View Article and Find Full Text PDFTher Drug Monit
December 2024
Department of Pharmaceutical and Pharmacological Sciences, KU Leuven.
Background: In adult patients with sepsis or septic shock admitted to the emergency department, a single intravenous 15 mg/kg amikacin dose provides inadequate pharmacokinetic-pharmacodynamic target attainment at the locally reported minimum inhibitory concentration (MIC) of 2 mg/L and the European Committee on Antimicrobial Susceptibility Testing clinical breakpoint for Enterobacterales of 8 mg/L.
Objectives: To provide an amikacin dosing strategy with a clinically acceptable probability of target attainment (PTA) for all patients.
Methods: Stochastic simulations were performed using a two-compartment population pharmacokinetics model of amikacin (NONMEM 7.
Med Phys
December 2024
Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Background: Safe implementation and translation of FLASH radiotherapy to the clinic requirehs development of beam monitoring devices capable of high temporal resolution with wide dynamic ranges. Ideal detectors should be able to monitor LINAC pulses, withstand high doses and dose rates, and provide information about the beam output, energy/range, and profile.
Purpose: Two novel detectors have been designed and tested for ultra-high dose-rate (UHDR) monitoring: a multilayer nano-structured 3-layer high-energy-current (HEC3) detector, and a segmented large area, 4-section flat (S4) detector with the goal of exploring their properties for a future combined design.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!