In vitro and in vivo cytotoxic activity and human serum albumin interaction for a methoxy-styryl-thiosemicarbazone.

Invest New Drugs

Instituto de Química, Departamento de Química Orgânica, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Rodovia BR-465, Km 7, Seropédica, RJ, 23890-000, Brazil.

Published: October 2019

Thiosemicarbazone is a class of compounds with potential applications in medicine, presenting high capacity to inhibit the growth of cancer cells as well as low toxicity. Because of high interest in anticancer studies involving thiosemicarbazones as new chemotherapeutic agents, a synthetic thiosemicarbazone derivative, 4-N-(2'-methoxy-styryl)-thiosemicarbazone (MTSC) was evaluated in vivo against Ehrlich carcinoma in an animal model. In vivo results demonstrated that MTSC treatment induced the survival of mice and altered significantly the body weight of the surviving mice 12 days after tumor inoculation. Treatment with 30 mg/kg of MTSC exhibited effective cytotoxic activity with T/C values of 150.49% (1 dose) and 278% (2 doses). Its interaction with human serum albumin (HSA), which plays a crucial role in the biodistribution of a wide variety of ligands, was investigated by multiple spectroscopic techniques at 296 K, 303 K, and 310 K, as well as by theoretical calculations. The interaction between HSA and MTSC occurs via ground-state association in the subdomain IIA (Sudlow's site I). The binding is moderate (K ≈ 10 M), spontaneous, entropically, and enthalpically driven. Molecular docking results suggested hydrogen bonding and hydrophobic interactions as the main binding forces. Overall, the interaction HSA:MTSC could provide therapeutic benefits, improving its cytotoxic efficacy and tolerability.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10637-018-00722-yDOI Listing

Publication Analysis

Top Keywords

cytotoxic activity
8
human serum
8
serum albumin
8
vitro vivo
4
vivo cytotoxic
4
activity human
4
interaction
4
albumin interaction
4
interaction methoxy-styryl-thiosemicarbazone
4
methoxy-styryl-thiosemicarbazone thiosemicarbazone
4

Similar Publications

Heteronemin suppresses EGF‑induced proliferation through the PI3K/PD‑L1 signaling pathways in cholangiocarcinoma.

Oncol Rep

March 2025

Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan, R.O.C.

Epidermal growth factor (EGF) binds with its surface receptor to stimulate gene expression and cancer cell proliferation. EGF stimulates cancer cell growth via phosphoinositide 3‑kinase (PI3K) and programmed cell death ligand 1 (PD‑L1) pathways. As an integrin αvβ3 antagonist, heteronemin exhibits potent cytotoxic effects against cancer cells.

View Article and Find Full Text PDF

Background: Actinomycetes, Gram-positive bacteria, are recognized for producing bioactive metabolites. Lonar Soda Lake, an alkaline ecosystem, hosts diverse actinomycetes with possible anticancer activities.

Aim: To assess the cytotoxic potential of fermentation metabolites from actinomycetes isolated from Lonar Soda Lake against HeLa cancer cells employing and methods.

View Article and Find Full Text PDF

Aim Traditional Ayurvedic herbo-mineral medicines have proven their potential in managing COVID-19. Cell-based assays of the Svarnvir-IV tablet demonstrated the virucidal activity against SARS-CoV-2 and its therapeutic action, along with safety in cytotoxicity, has been proved. In the present study, in vivo, safety profile and compositional analysis of the Svarnvir-IV tablet were performed.

View Article and Find Full Text PDF

In continuation of our efforts to develop new anticancer compounds, a new series of imidazo[1,5-]pyridine-chalcone derivatives was designed, synthesized, characterized, and evaluated for its cytotoxicity against five human cancer cell lines, , breast (MDA-MB-231), colon (RKO), bone (Mg-63), prostate (PC-3), and liver (HepG2) cell lines, as well as a normal cell line (HEK). Among the synthesized compounds, two exhibited promising cytotoxicity against the MDA-MB-231 cell line with IC values of 4.23 ± 0.

View Article and Find Full Text PDF

Metabolic syndrome (MetS) is a cluster of interrelated metabolic abnormalities that significantly elevate the risk of cardiovascular disease, obesity, and diabetes. Flavonoids, a diverse class of bioactive polyphenolic compounds found in plant-derived foods and beverages, have garnered increasing attention as potential therapeutic agents for improving metabolic health. This review provides a comprehensive analysis of the therapeutic effects of flavonoids in the context of the MetS, with a particular focus on their modulation of the AMP-activated protein kinase (AMPK) pathway.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!