Exercise Training Induces Depot-Specific Adaptations to White and Brown Adipose Tissue.

iScience

Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, 460 W. 12(th) Avenue, Columbus, OH 43210, USA. Electronic address:

Published: January 2019

Exercise affects whole-body metabolism through adaptations to various tissues, including adipose tissue (AT). Recent studies investigated exercise-induced adaptations to AT, focusing on inguinal white adipose tissue (WAT), perigonadal WAT, and interscapular brown adipose tissue (iBAT). Although these AT depots play important roles in metabolism, they account for only ∼50% of the AT mass in a mouse. Here, we investigated the effects of 3 weeks of exercise training on all 14 AT depots. Exercise induced depot-specific effects in genes involved in mitochondrial activity, glucose metabolism, and fatty acid uptake and oxidation in each adipose tissue (AT) depot. These data demonstrate that exercise training results in unique responses in each AT depot; identifying the depot-specific adaptations to AT in response to exercise is essential to determine how AT contributes to the overall beneficial effect of exercise.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6348298PMC
http://dx.doi.org/10.1016/j.isci.2018.12.033DOI Listing

Publication Analysis

Top Keywords

adipose tissue
20
exercise training
12
depot-specific adaptations
8
brown adipose
8
exercise
7
adipose
5
tissue
5
training induces
4
induces depot-specific
4
adaptations
4

Similar Publications

A Bioabsorbable Implant Seeded with Adipose-Derived Stem Cells for Adipose Regeneration.

Tissue Eng Part A

January 2025

Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.

Adipose tissue engineering requires effective strategies for regenerating adipose tissue, with adipose-derived stem cells (ASCs) being favored due to their robust self-renewal capacity and multipotent differentiation potential. In this study, the efficacy of poly-L-lactic acid (PLLA) mesh containing collagen sponge (CS), seeded with ASCs to promote adipose tissue formation, was investigated. PLLA-CS implants seeded with GFP-positive ASCs were inserted at high concentration (1 × 10 cells/implant, H-ASC) and low concentration (1 × 10 cells/implant, L-ASC), as were unseeded controls.

View Article and Find Full Text PDF

Single-nucleus RNA sequencing (snRNA-seq), an alternative to single-cell RNA sequencing (scRNA-seq), encounters technical challenges in obtaining high-quality nuclei and RNA, persistently hindering its applications. Here, we present a robust technique for isolating nuclei across various tissue types, remarkably enhancing snRNA-seq data quality. Employing this approach, we comprehensively characterize the depot-dependent cellular dynamics of various cell types underlying mouse adipose tissue remodeling during obesity.

View Article and Find Full Text PDF

Autologous adipose tissue grafting (AAG) can provide soft tissue reconstruction in congenital defects, traumatic injuries, cancer care, or cosmetic procedures; over 94,000 AAG procedures are performed in the United States every year. Despite its effectiveness, the efficiency of AAG is limited by unpredictable adipocyte survival, impacting graft volume retention (26-83%). Acellular adipose matrices (AAMs) have emerged as a potential alternative to AAG.

View Article and Find Full Text PDF

Osteogenic differentiation of bone marrow stem cells (BMSCs) is essential for bone tissue regeneration and repair. However, this process is often hindered by an unstable differentiation influenced by local microenvironmental factors. While small extracellular vesicles (sEVs) derived from osteogenically induced adipose mesenchymal stem cells (ADSCs) reportedly can promote osteogenic differentiation of BMSCs, the underlying molecular mechanisms remain incompletely understood.

View Article and Find Full Text PDF

Obesity is a global health concern that promotes chronic low-grade inflammation, leading to insulin resistance, a key factor in many metabolic diseases. Angiotensin 1-7 (Ang 1-7), a component of the renin-angiotensin system (RAS), exhibits anti-inflammatory effects in obesity and related disorders, though its mechanisms remain unclear. In this study, we examined the effect of Ang 1-7 on inflammation of white adipose tissue (WAT) in dietary-induced obese mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!