Chitin deacetylases are a group of enzymes catalysing the conversion of chitin to chitosan. Obtaining chitosan with established deacetylation degree and pattern is important for biomedical and biotechnological applications. Understandings of the structural properties of chitin deacetylases and the specificity of their interactions with chitin may conduct to the control of the pattern of deacetylation of chitosan. Our study is focused on the characterization and comparison of the structural and physicochemical properties of chitin deacetylases from fungi and marine bacteria. Despite the low sequences identity for the investigated chitin deacetylases, there are amino acids belonging to their active sites that are strongly conserved. Moreover, they reveal an increased structural similarity of their catalytic domains, reflecting the common biological function of these enzymes. The studied enzymes present dissimilar local physicochemical properties of their catalytic cavities that could be responsible of their distinct deacetylation patterns. Molecular docking studies reflect that deacetylation efficiency is also distinct for the chitin and partially deacetylated chitin oligomers and that N-acetylglucosamine units and some partially deacetylated chitin oligomers could have inhibitory effect against chitin deacetylases belonging to fungi and marine bacteria.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmgm.2019.01.002 | DOI Listing |
Pest Manag Sci
January 2025
Dpto. Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.
Background: Chitin is a crucial component of fungal cell walls and an effective elicitor of plant immunity; however, phytopathogenic fungi have developed virulence mechanisms to counteract the activation of this plant defensive response. In this study, the molecular mechanism of chitin-induced suppression through effectors involved in chitin deacetylases (CDAs) and their degradation (EWCAs) was investigated with the idea of developing novel dsRNA-biofungicides to control the cucurbit powdery mildew caused by Podosphaera xanthii.
Results: The molecular mechanisms associated with the silencing effect of the PxCDA and PxEWCAs genes were first studied through dsRNA cotyledon infiltration assays, which revealed a ≈80% reduction in fungal biomass and a 50% decrease in gene expression.
Int J Mol Sci
December 2024
Liaoning Engineering and Technology Research Center for Insect Resources, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China.
Chitin deacetylases (CDAs) are carbohydrate esterases associated with chitin metabolism and the conversion of chitin into chitosan. Studies have demonstrated that chitin deacetylation is essential for chitin organization and compactness and therefore influences the mechanical and permeability properties of chitinous structures, such as the peritrophic membrane (PM) and cuticle. In the present study, two genes ( and ) encoding CDA protein isoforms were identified and characterized in Chinese oak silkworm () larvae.
View Article and Find Full Text PDFAMB Express
January 2025
Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
A Novel cold-active chitin deacetylase from Shewanella psychrophila WP2 (SpsCDA) was overexpressed in Escherichia coli BL21 and employed for deacetylation of chitin to chitosan. The produced chitosan was characterized, and its antifungal activity was investigated against Fusarium oxysporum. The purified recombinant SpsCDA appeared as a single band on SDS-PAGE at approximately 60 kDa, and its specific activity was 92 U/mg.
View Article and Find Full Text PDFCurr Res Microb Sci
November 2024
Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar 751004, Odisha, India.
Chitosan is a promising biopolymer with wide range of applications. It is the deacetylated product of chitin. Commercially, it is produced from chitin via a harsh thermochemical process that has several shortcomings and heterogenous deacetylation product.
View Article and Find Full Text PDFAppl Biochem Biotechnol
December 2024
School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Huqiu District, No. 99 Xuefu Road, Huqiu District, Suzhou City, 215009, Jiangsu Province, P.R. China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!