A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Integrating an ex-vivo skin biointerface with electrochemical DNA biosensor for direct measurement of the protective effect of UV blocking agents. | LitMetric

Skin cancer is the most frequent kind of cancer in white people in many parts of the world. UV-induced DNA damage and genetic mutation can subsequently lead to skin cancer. Therefore development of new biosensing strategies for detection of UV-induced DNA damage is of great importance. Here we demonstrate a novel combination of an ex-vivo skin biointerface and an electrochemical DNA sensor for the direct detection of UV induced DNA damage and investigation the protective effect of various UV blockers (Zinc-oxide (ZnO), titanium-dioxide (TiO) nanoparticles (NPs) and sunscreens) against DNA damage. A diazonium modified screen-printed carbon electrode immobilized with a DNA sequence related to the p53 tumour suppressor gene, the most commonly affected gene in human UV-induced skin cancer, was applied as an electrochemical DNA sensor. Electrochemical impedance spectroscopy (EIS) was employed for the detection of DNA damage induced by UV-A radiation by following the changes in charge transfer resistance (R). The protective effects of UV blockers applied onto a pig skin surface (a suitable model representing human skin) were successfully detected by the DNA sensor. We observed that the naked skin has little UV protection showing an 18.2% decreases in ∆R/R values compared to the control, while applying both NPs and NP-formulated sunscreens could significantly reduce DNA damage, resulting in a decrease in ∆R/R values of 67.1% (ZnO NPs), 77.2% (TiO NPs), 77.1% (sunscreen 1) and 92.4% (sunscreen 2), respectively. Moreover, doping moisturising cream with NPs could provide a similar DNA protective effect. This new method is a biologically relevant alternative to animal testing and offers advantages such as fast, easy and inexpensive processing, in addition to its miniaturised dimension, and could be used for a range of applications in other sources of DNA damage and the protective effect of different UV blocking agents and other topical formulations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2018.12.025DOI Listing

Publication Analysis

Top Keywords

dna damage
28
dna
13
electrochemical dna
12
skin cancer
12
dna sensor
12
skin
8
ex-vivo skin
8
skin biointerface
8
biointerface electrochemical
8
protective blocking
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!