A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

In vivo measurement of blood clot mechanics from computational fluid dynamics based on intravital microscopy images. | LitMetric

In vivo measurement of blood clot mechanics from computational fluid dynamics based on intravital microscopy images.

Comput Biol Med

Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA. Electronic address:

Published: March 2019

Ischemia which leads to heart attacks and strokes is one of the major causes of death in the world. Whether an occlusion occurs or not depends on the ability of a growing thrombus to resist flow forces exerted on its structure. This manuscript provides the first known in vivo measurement of how much stress a clot can withstand, before yielding to the surrounding blood flow. Namely, Lattice-Boltzmann Method flow simulations are performed based on 3D clot geometries, which are estimated from intravital microscopy images of laser-induced injuries in cremaster microvasculature of live mice. In addition to reporting the blood clot yield stresses, we also show that the thrombus "core" does not experience significant deformation, while its "shell" does. This indicates that the shell is more prone to embolization. Therefore, drugs should be designed to target the shell selectively, while leaving the core intact to minimize excessive bleeding. Finally, we laid down a foundation for a nondimensionalization procedure which unraveled a relationship between clot mechanics and biology. Hence, the proposed framework could ultimately lead to a unified theory of thrombogenesis, capable of explaining all clotting events. Thus, the findings presented herein will be beneficial to the understanding and treatment of heart attacks, strokes and hemophilia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6390965PMC
http://dx.doi.org/10.1016/j.compbiomed.2019.01.001DOI Listing

Publication Analysis

Top Keywords

vivo measurement
8
blood clot
8
clot mechanics
8
intravital microscopy
8
microscopy images
8
heart attacks
8
attacks strokes
8
clot
5
measurement blood
4
mechanics computational
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!