Engineering retinal pigment epithelial cells regeneration for transplantation in regenerative medicine using PEG/Gellan gum hydrogels.

Int J Biol Macromol

Department of BIN Convergence Technology, Department of PolymerNano Science & Technology and Polymer Materials Fusion Center, Chonbuk National University, Deokjin, Jeonju 54896, Republic of Korea. Electronic address:

Published: June 2019

Retinal pigment epithelium (RPE) plays an important role in maintaining normal function and visual function of the retina, and the degeneration of RPE causes various retinal degenerative diseases. Currently, there is a lack of effective treatment for this, and it is being studied to produce a suitable scaffold for cell transplantation. In this experiment, Polyethylene glycol (PEG)/Gellan Gum (GG) hydrogel was prepared by adding harmless PEG and gellan gum, which is a biocompatible, degradable and widely used in modern tissue engineering. PEG/GG hydrogel was prepared with 0, 1, 3, 5 wt% PEG/GG according to the concentration of PEG, and ARPE-19 cells were used to confirm the cell attachment environment. As a result, it showed superior biocompatibility (>90%), cell adhesion and improved cell growth compared to gellan gum hydrogel. In addition, RT-PCR was used to confirm RPE-specific gene expression, and the result showed that it was positively influenced. As a result, it was observed that PEG/GG hydrogel promotes retinal regeneration compared to pure gellan gum. 3 wt% PEG/GG could be used as an alternative for retinal regeneration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2019.01.078DOI Listing

Publication Analysis

Top Keywords

gellan gum
12
retinal pigment
8
peg/gellan gum
8
gum hydrogel
8
hydrogel prepared
8
peg/gg hydrogel
8
retinal regeneration
8
gum
5
engineering retinal
4
pigment epithelial
4

Similar Publications

Preparation of thermoresponsive & enzymatically crosslinkable gelatin-gellan gum bioink: A protein-polysaccharide hydrogel for 3D bioprinting of complex soft tissues.

Int J Biol Macromol

January 2025

Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India. Electronic address:

Developing superior bioinks presents several challenges in achieving ideal properties such as biocompatibility, viscosity, degradation rates & mechanical properties which are required to make functional tissue constructs. Various attempts have been made to prepare excellent bioink compositions that are suitable to address the above challenges. Herein, a versatile combination of gelatin (GL) - gellan gum (GG) bioink was successfully formulated & the bioink 7.

View Article and Find Full Text PDF

Gellan-amino acid hydrogel-based bioreactor for optimizing the production of yeast metabolites.

Carbohydr Polym

March 2025

Biochemical Engineering Research & Process Development Centre (BERPDC), Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Sector-39A, Chandigarh 160036, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:

Hydrogels mimic natural environments due to their hydrated, polymeric networks which are beneficial for microorganism growth. The substantial water content maintains a consistently moist environment, and porous structure of hydrogel promotes efficient nutrient transfer and cell distribution, offering advantages over traditional liquid bioreactors. While their application in cell immobilization for bioconversion is well-known, their use as a solid-state fermentation matrix remains unexplored.

View Article and Find Full Text PDF

Biocompatible dually reinforced gellan gum hydrogels with selective antibacterial activity.

Carbohydr Polym

March 2025

School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, PR China. Electronic address:

The poor mechanics and functionality of natural-polymer hydrogels from gellan gum (GG) prohibit their practical application, despite the intrinsic thermo-reversible gelation nature, structural and quality consistency, biocompatibility, biodegradability and sustainability of microbial fermentation-produced GG. Herein, a dual-reinforcing strategy, i.e.

View Article and Find Full Text PDF

A water-soluble drug nanoparticle-loaded in situ gel for enhanced precorneal retention and its transduction mechanism of pharmacodynamic effects.

Int J Pharm

December 2024

Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China. Electronic address:

Article Synopsis
  • Timolol maleate (TM) is commonly used to treat glaucoma, but traditional eye drops don't work well due to the eye's barriers.
  • Researchers created a new formulation using nanoparticles (NPs) and an in situ gel (ISG) system to improve drug delivery and retention.
  • The new formulation showed excellent safety, longer duration in the eye, and effectively lowered intraocular pressure for up to 12 hours, providing insights for future glaucoma treatments.
View Article and Find Full Text PDF

Effectiveness of different gums on modulating of glycemic indices in adults: a systematic review and meta-analysis.

J Diabetes Metab Disord

June 2025

Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran.

Background: Functional foods have been widely used as the anti-diabetic agents worldwide. Existing studies presented conflicting results of anti-hyperglycemic properties of gums. This systematic review and meta-analysis study evaluated the existing trials and determined the efficacy of different gums on glycemic indices.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!