Molecular interaction between asymmetric ligand-capped gold nanocrystals.

J Chem Phys

Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment, Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China.

Published: January 2019

Atomistic molecular dynamics simulations are performed to study the potential of mean force (PMF) between two asymmetric gold nanocrystals (NCs) capped by alkylthiols in a vacuum. We systematically investigate the dependence of the PMF on the sizes and capping ligand lengths of two NCs. The results show that the potential well depth scales linearly with increasing total length of two capping ligands on asymmetric dimers, but it hardly depends on the NC size. The predicted equilibrium distance between two asymmetric NCs grows significantly and linearly with the total size of two NCs and exhibits only a slight increase with increasing total ligand length. These findings are explained in terms of the amount of ligand interdigitation between NC surfaces as well as its alterations caused by the change in ligand length and NC size. Furthermore, we introduce a simple formula to estimate the equilibrium distance of two asymmetric NCs. On the basis of the computed PMFs, we propose an empirical two-body potential between asymmetric capped gold NCs.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5065476DOI Listing

Publication Analysis

Top Keywords

gold nanocrystals
8
increasing total
8
equilibrium distance
8
distance asymmetric
8
asymmetric ncs
8
ligand length
8
asymmetric
6
ncs
6
molecular interaction
4
interaction asymmetric
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!