Geminal perturbation theory based on the unrestricted Hartree-Fock wavefunction.

J Chem Phys

Laboratory of Theoretical Chemistry, Faculty of Science, Institute of Chemistry, ELTE Eötvös Loránd University, Budapest, Hungary.

Published: January 2019

A perturbative correction exploiting natural orbitals and the pair function structure of the unrestricted Hartree-Fock (UHF) wavefunction is devised. The method offers a simple framework for describing multireference systems where static correlation is captured by UHF. The UHF wavefunction is built of two-electron fragments (geminals), involving both singlet and triplet (m = 0) parts. At order zero of the perturbative treatment, configuration interaction coefficients of UHF geminals are relaxed. The zero order Hamiltonian is of the Dyall-type, including explicit two-electron interaction within geminals and leading to a formal 6th power scaling. Adopting an effective one-electron zero order Hamiltonian term for the subset of virtual orbitals reduces scaling of the correction step to 4th power. Formal properties of the proposed schemes are discussed. Energetic data and natural occupation numbers of illustrative test systems are used to assess the new approach. The cases where the wavefunction becomes essentially spin pure at the level of reference show good performance. Spin contamination remaining at order zero is found to undermine the perturbative correction.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5060731DOI Listing

Publication Analysis

Top Keywords

unrestricted hartree-fock
8
perturbative correction
8
uhf wavefunction
8
order hamiltonian
8
geminal perturbation
4
perturbation theory
4
theory based
4
based unrestricted
4
wavefunction
4
hartree-fock wavefunction
4

Similar Publications

The linear scaling divide-expand-consolidate (DEC) framework is expanded to include unrestricted Hartree-Fock references. By partitioning the orbital space and employing local molecular orbitals, the full molecular calculation can be performed as independent calculations on individual fragments, making the method well-suited for massively parallel implementations. This approach also incorporates error control through the fragment optimization threshold (FOT), which maintains precision and consistency throughout the calculations.

View Article and Find Full Text PDF

Effect of Exact Exchange on the Energy Landscape in Self-Consistent Field Theory.

J Chem Theory Comput

January 2025

Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.

Density functional approximations can reduce the spin symmetry breaking observed for self-consistent field (SCF) solutions compared to Hartree-Fock theory, but the amount of exact Hartree-Fock (HF) exchange appears to be a key determinant in broken symmetry. To elucidate the precise role of exact exchange, we investigate the energy landscape of unrestricted Hartree-Fock and Kohn-Sham density functional theory for benzene and square cyclobutadiene, which provide paradigmatic examples of closed-shell and open-shell electronic structures, respectively. We find that increasing the amount of exact exchange leads to more local SCF minima, which can be characterized as combinatorial arrangements of unpaired electrons in the carbon π system.

View Article and Find Full Text PDF

Generalized Hartree-Fock (GHF) is a long-established electronic structure method that can lower the energy (compared to spin-restricted variants) by breaking physical wave function symmetries, namely and . After an exposition of GHF theory, we assess the use of GHF trial wave functions in phaseless auxiliary field quantum Monte Carlo (ph-AFQMC-G) calculations of strongly correlated molecular systems including symmetrically stretched hydrogen rings, carbon dioxide, and dioxygen. Imaginary time propagation is able to restore symmetry and yields energies of comparable or better accuracy than CCSD(T) with unrestricted HF and GHF references, and consistently smooth dissociation curves─a remarkable result given the relative scalability of ph-AFQMC-G to larger system sizes.

View Article and Find Full Text PDF

For moiré bilayer TMD superlattices, full-configuration-interaction (FCI) calculations are presented that take into account both the intra-moiré-quantum-dot (MQD) charge-carrier Coulombic interactions, as well as the crystal-field effect from the surrounding moiré pockets (inter-moiré-QD interactions). The effective computational embedding strategy introduced here allows for an FCI methodogy that enables the complete interpretation of the counterintuitive experimental observations reported recently in the context of moiré TMD superlattices at integer fillings ν=2 and 4. Two novel states of matter are reported: (i) a genuinely quantum-mechanical supercrystal of sliding Wigner molecules (WMs) for unstrained moiré TMD materials (when the crystal field is commensurate with the trilobal symmetry of the confining potential in each embedded MQD) and (ii) a supercrystal of pinned Wigner molecules when the crystal field is incommensurate with the trilobal symmetry or straining of the whole material is involved.

View Article and Find Full Text PDF

Highly Accurate and Robust Constraint-Based Orbital-Optimized Core Excitations.

J Phys Chem A

November 2024

Chair of Theoretical Chemistry, Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, Munich D-81377, Germany.

Article Synopsis
  • The paper discusses an advanced method called COOX, which is adapted to calculate core excitations using a constraint-based approach in density functional theory (DFT).
  • COOX combines elements like spin-unrestricted formalism and relativistic corrections to deliver highly accurate results for core excitations in second- and third-period atoms, with small errors.
  • The method also shows strong performance for heavier atoms and is competitive with established techniques like ΔSCF, making it a valuable tool for simulating X-ray absorption spectra with better convergence and lower computational costs.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!