For a given many-electron molecule, it is possible to define a corresponding one-electron Schrödinger equation, using potentials derived from simple atomic densities, whose solution predicts fairly accurate molecular orbitals for single-determinant and multideterminant wavefunctions for the molecule. The energy is not predicted and must be evaluated by calculating Coulomb and exchange interactions over the predicted orbitals. Transferable potentials for first-row atoms and transition metal oxides that can be used without modification in different molecules are reported. For improved accuracy, molecular wavefunctions can be refined by slightly scaling nuclear charges and by introducing potentials optimized for functional groups. The accuracy is further improved by a single diagonalization of the Fock matrix constructed from the predicted orbitals. For a test set of 20 molecules representing different bonding environments, the transferable potentials with scaling give wavefunctions with energies that deviate from exact self-consistent field or configuration interaction energies by less than 0.05 eV and 0.02 eV per bond or valence electron pair, respectively. On diagonalization of the Fock matrix, the corresponding errors are reduced by a factor of three to less than 0.016 eV and 0.006 eV, respectively. Applications to the ground and excited states of a TiO nanoparticle and chlorophyll-a are reported.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5064781DOI Listing

Publication Analysis

Top Keywords

predicted orbitals
8
transferable potentials
8
diagonalization fock
8
fock matrix
8
potentials
5
prediction many-electron
4
wavefunctions
4
many-electron wavefunctions
4
wavefunctions atomic
4
atomic potentials
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!