Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We calibrate basis sets and performance of two theoretical approaches to compute X-ray absorption spectra (XAS) of condensed water by comparison to experiments on hexagonal ice Ih. We apply both the transition-potential half-core-hole approach and the complex polarization propagator using four different models of the crystal with increasing oxygen and proton disorder but find poor agreement with experiments. We note that there are large variations in experimental spectra depending on detection mode and how the ice samples were prepared, which leads us to critically investigate what structures were actually prepared and measured in each case. This is done by using a Monte Carlo-based fitting technique which fits the spectra based on a library of precomputed spectra and assigns weights to contributions from different model structures. These are then used to generate O-O and O-H radial distribution functions and tetrahedrality parameters associated with each of the measured spectra. We find that all spectra are associated with sharp peaks at the oxygen positions in the perfect lattice, but with significant disorder around these positions. We suggest that presently available XAS of hexagonal ice are not fully representative of the perfect crystalline lattice, but contain varying amounts of defects and possible contributions from low-density amorphous ice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.5078385 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!