Quantitative/qualitative analysis of adhesive-dentin interface in the presence of 10-methacryloyloxydecyl dihydrogen phosphate.

J Mech Behav Biomed Mater

Department of Conservative Dentistry, Division of Biomaterials and Engineering, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.

Published: April 2019

Dental adhesive provides effective retention of filling materials via adhesive-dentin hybridization. The use of co-monomers, such as 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP), is thought to be crucial for hybridization owing to their ionic-binding to calcium and co-polymerization in the polymerizable adhesives. Optimal hybridization partly depends on the mechanical properties of polymerized adhesives, which are likely to be proportional to the degree of conversion ratio. This study assessed the correlation between polymerization quality and mechanical properties at the adhesive-dentin interfaces in the presence or absence of 10-MDP. In situ Raman microspectroscopy and nanoindentation tests were used concurrently to quantify the degree of conversion ratio and dynamic mechanical properties across the adhesive-dentin interfaces. Despite the excellent diffusion and apparent higher degree of co-polymerization, 10-MDP reduced the elastic modulus of the interface. The higher viscoelastic properties of the adhesive are suggestive of poor polymerization, namely polymerization linearity related to the long carboxyl chain of 10-MDP. Such reduced mechanical integrity of hybridization could also be associated with the inhibition of nano-layering between 10-MDP and mineralized tissue in the presence of hydroxyethyl methacrylate (HEMA). This potential drawback of HEMA necessitates further qualitative/quantitative characterization of adhesive-dentin hybridization using a HEMA-free/low concentration experimental 10-MDP monomer, which theoretically possesses superior chemical bonding potential to the current HEMA-rich protocol.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmbbm.2018.12.038DOI Listing

Publication Analysis

Top Keywords

mechanical properties
12
10-methacryloyloxydecyl dihydrogen
8
dihydrogen phosphate
8
adhesive-dentin hybridization
8
degree conversion
8
conversion ratio
8
properties adhesive-dentin
8
adhesive-dentin interfaces
8
10-mdp reduced
8
10-mdp
6

Similar Publications

Menthol is a naturally occurring cyclic terpene alcohol and is the major component of peppermint and corn mint essential oils extracted from Mentha piperita L. and Mentha arvensis L..

View Article and Find Full Text PDF

Babesiosis in sickle cell disease (SCD) is marked by severe anemia but the underlying red blood cell (RBC) rheological parameters remain largely undefined. Here, we describe altered RBC deformability from both primary (host RBC sickle hemoglobin mediated) and secondary changes (Babesia parasite infection mediated) to the RBC membrane using wild type AA, sickle trait AS and sickle SS RBCs. Our ektacytometry (LORRCA) analysis demonstrates that the changes in the host RBC bio-mechanical properties, pre- and post- Babesia infection, reside on a spectrum of severity, with wild type infected AA cells, despite showing a significant reduction of deformability under both shear and osmolarity gradients, exhibiting only a mild phenotype; compared to infected AS RBCs which show median changes in deformability and infected SS RBCs which exhibit the most dramatic impact of infection on cellular rheology, including an increase in Point of Sickling values.

View Article and Find Full Text PDF

Blood clots are complex structures composed of blood cells and proteins held together by the structural framework provided by an insoluble fibrin network. Factor (F)XIII is a protransglutaminase essential for stabilizing the fibrin network. Activated FXIII(a) introduces novel covalent crosslinks within and between fibrin and other plasma and cellular proteins, and thereby promotes fibrin biochemical and mechanical integrity.

View Article and Find Full Text PDF

In nature, organisms adapt to environmental changes through training to learn new abilities, offering valuable insights for developing intelligent materials. However, replicating this adaptive learning in synthetic materials presents a significant challenge. This study introduces a feasible approach to train liquid crystal elastomers (LCEs) by integrating a mechanophore tetraarylsuccinonitrile (TASN) into their main chain, addressing the challenge of enabling synthetic materials to exchange substances with their environment.

View Article and Find Full Text PDF

The global dental implant market is projected to reach $9.5 billion by 2032, growing at a 6.5% compound annual growth rate due to the rising prevalence of dental diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!