Methylmercury's chemistry: From the environment to the mammalian brain.

Biochim Biophys Acta Gen Subj

Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil. Electronic address:

Published: December 2019

Methylmercury is a neurotoxicant that is found in fish and rice. MeHg's toxicity is mediated by blockage of -SH and -SeH groups of proteins. However, the identification of MeHg's targets is elusive. Here we focus on the chemistry of MeHg in the abiotic and biotic environment. The toxicological chemistry of MeHg is complex in metazoans, but at the atomic level it can be explained by exchange reactions of MeHg bound to -S(e)H with another free -S(e)H group (RS(e)-HgMe + R-S(e)H ↔ RS(e)H + R-S(e)-HgMe). This reaction was first studied by professor Rabenstein and here it is referred as the "Rabenstein's Reaction". The absorption, distribution, and excretion of MeHg in the environment and in the body of animals will be dictated by Rabenstein's reactions. The affinity of MeHg by thiol and selenol groups and the exchange of MeHg by Rabenstein's Reaction (which is a diffusion controlled reaction) dictates MeHg's neurotoxicity. However, it is important to emphasize that the MeHg exchange reaction velocity with different types of thiol- and selenol-containing proteins will also depend on protein-specific structural and thermodynamical factors. New experimental approaches and detailed studies about the Rabenstein's reaction between MeHg with low molecular mass thiol (LMM-SH) molecules (cysteine, GSH, acetyl-CoA, lipoate, homocysteine) with abundant high molecular mass thiol (HMM-SH) molecules (albumin, hemoglobin) and HMM-SeH (GPxs, Selenoprotein P, TrxR1-3) are needed. The study of MeHg migration from -S(e)-Hg- bonds to free -S(e)H groups (Rabenstein's Reaction) in pure chemical systems and neural cells (with special emphasis to the LMM-SH and HMM-S(e)H molecules cited above) will be critical to developing realistic constants to be used in silico models that will predict the distribution of MeHg in humans.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbagen.2019.01.006DOI Listing

Publication Analysis

Top Keywords

rabenstein's reaction
12
mehg
10
-seh groups
8
chemistry mehg
8
free -seh
8
molecular mass
8
mass thiol
8
reaction
6
methylmercury's chemistry
4
chemistry environment
4

Similar Publications

Methylmercury is a highly toxic compound and human exposure is mainly related to consumption of polluted fish and seafood. The inactivation of thiol-based enzymes, promoted by the strong affinity binding of electrophilic mercuric ions to thiol and selenol groups of proteins, is likely an important factor explaining its toxicity. A key role is played by the chemistry and reactivity of the mercury-chalcogens bond, particularly HgS and HgSe, which is the focus of this computational work (level of theory: (COSMO)-ZORA-BLYP-D3(BJ)/TZ2P).

View Article and Find Full Text PDF

Methylmercury's chemistry: From the environment to the mammalian brain.

Biochim Biophys Acta Gen Subj

December 2019

Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil. Electronic address:

Methylmercury is a neurotoxicant that is found in fish and rice. MeHg's toxicity is mediated by blockage of -SH and -SeH groups of proteins. However, the identification of MeHg's targets is elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!