Revised Approach to the Role of Fatigue in Anterior Cruciate Ligament Injury Prevention: A Systematic Review with Meta-Analyses.

Sports Med

Exercise Science & Neuroscience Unit, Department Exercise & Health, Faculty of Science, University of Paderborn, Paderborn, Germany.

Published: April 2019

Background: Causes of anterior cruciate ligament (ACL) injuries are multifactorial. Anterior cruciate ligament injury prevention should thus be approached from a multifactorial perspective as well. Training to resist fatigue is an underestimated aspect of prevention programs given that the presence of fatigue may play a crucial role in sustaining an ACL injury.

Objectives: The primary objective of this literature review was to summarize research findings relating to the kinematic and kinetic effects of fatigue on single-leg landing tasks through a systematic review and meta-analysis. Other objectives were to critically appraise current approaches to examine the effects of fatigue together with elucidating and proposing an optimized approach for measuring the role of fatigue in ACL injury prevention.

Methods: A systematic literature search was conducted in the databases PubMed (1978-November 2017), CINAHL (1992-November 2017), and EMBASE (1973-November 2017). The inclusion criteria were: (1) full text, (2) published in English, German, or Dutch, (3) healthy subjects, (4) average age ≥ 18 years, (5) single-leg jump landing task, (6) evaluation of the kinematics and/or kinetics of the lower extremities before and after a fatigue protocol, and (7) presentation of numerical kinematic and/or kinetic data. Participants included healthy subjects who underwent a fatigue protocol and in whom the effects of pre- and post-fatigue on three-dimensional lower extremity kinematic and kinetics were compared. Methods of data collection, patient selection, blinding, prevention of verification bias, and study design were independently assessed.

Results: Twenty studies were included, in which four types of single-leg tasks were examined: the single-leg drop vertical jump, the single-leg drop landing, the single-leg hop for distance, and sidestep cutting. Fatigue seemed to mostly affect initial contact (decreased angles post-fatigue) and peak (increased angles post-fatigue) hip and knee flexion. Sagittal plane variables at initial contact were mostly affected under the single-leg hop for distance and sidestep cutting conditions whilst peak angles were affected during the single-leg drop jump.

Conclusions: Training to resist fatigue is an underestimated aspect of prevention programs given that the presence of fatigue may play a crucial role in sustaining an ACL injury. Considering the small number of variables affected after fatigue, the question arises whether the same fatigue pathways are affected by the fatigue protocols used in the included laboratory studies as are experienced on the sports field.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6422960PMC
http://dx.doi.org/10.1007/s40279-019-01052-6DOI Listing

Publication Analysis

Top Keywords

fatigue
14
anterior cruciate
12
cruciate ligament
12
single-leg drop
12
role fatigue
8
ligament injury
8
injury prevention
8
systematic review
8
training resist
8
resist fatigue
8

Similar Publications

Background: Multiple sclerosis is a central neurogenic demyelinating disease. This is one of the most common neurological diseases in humans and is the most debilitating at a young age. Symptoms of multiple sclerosis include vision problems, balance problems, dizziness, sensory disturbances, chronic neuropathy, and fatigue.

View Article and Find Full Text PDF

The objectives of this case series study were to test whether an elastic back exosuit could increase a wearer's endurance when lifting heavy objects and to assess whether lifting more cancels out the exosuit's risk reduction benefits. We found that 88% of participants increased their lifting repetitions while wearing an exosuit, with endurance increases ranging from 28 to 75%. We then used these empirical data with an ergonomic assessment model based on fatigue failure principles to estimate the effects on cumulative back damage (an indicator of low back disorder risk) when an exosuit is worn and more lifts are performed.

View Article and Find Full Text PDF

Sensorless model-based tension control for a cable-driven exosuit.

Wearable Technol

December 2024

Sensory Motor Systems Lab, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland.

Cable-driven exosuits have the potential to support individuals with motor disabilities across the continuum of care. When supporting a limb with a cable, force sensors are often used to measure tension. However, force sensors add cost, complexity, and distal components.

View Article and Find Full Text PDF

Electromyogram (EMG) has been a fundamental approach for prosthetic hand control. However it is limited by the functionality of residual muscles and muscle fatigue. Currently, exploring temporal shifts in brain networks and accurately classifying noninvasive electroencephalogram (EEG) for prosthetic hand control remains challenging.

View Article and Find Full Text PDF

Cyclin dependent kinase 2 (CDK2) is responsible for enforcing progression through the G1-S phase transition. Mutations and alterations in the CDK2 signaling pathway are associated with various cancers, most commonly breast, ovarian, prostate, leukemia, and lymphoma. CDK2 inhibitors have shown promising preclinical and early clinical results, and this class of agents may be most effective against cancers with cyclin E overactivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!