Chemotherapy-induced cognitive impairment, also known as "chemobrain," is a common side effect. The purpose of this study was to examine whether ginsenoside Rg1, a ginseng-derived compound, could prevent chemobrain and its underlying mechanisms. A mouse model of chemobrain was developed with three injections of docetaxel, adriamycin, and cyclophosphamide (DAC) in combination at a 2-day interval. Rg1 (5 and 10 mg/kg daily) was given 1 week prior to DAC regimen for 3 weeks. An amount of 10 mg/kg Rg1 significantly improved chemobrain-like behavior in water maze test. In vivo neuroimaging revealed that Rg1 co-treatment reversed DAC-induced decreases in prefrontal and hippocampal neuronal activity and ameliorated cortical neuronal dendritic spine elimination. It normalized DAC-caused abnormalities in the expression of multiple neuroplasticity biomarkers in the two brain regions. Rg1 suppressed DAC-induced elevation of the proinflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), but increased levels of the anti-inflammatory cytokines IL-4 and IL-10 in multiple sera and brain tissues. Rg1 also modulated cytokine mediators and inhibited DAC-induced microglial polarization from M2 to M1 phenotypes. In in vitro experiments, while impaired viability of PC12 neuroblastic cells and hyperactivation of BV-2 microglial cells, a model of neuroinflammation, were observed in the presence of DAC, Rg1 co-treatment strikingly reduced DAC's neurotoxic effects and neuroinflammatory response. These results indicate that Rg1 exerts its anti-chemobrain effect in an association with the inhibition of neuroinflammation by modulating microglia-mediated cytokines and the related upstream mediators, protecting neuronal activity and promoting neuroplasticity in particular brain regions associated with cognition processing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12035-019-1474-9 | DOI Listing |
Biomed Chromatogr
February 2025
School of Chinese Medica Materia, Beijing University of Chinese Medicine, Beijing, China.
Panax notoginseng (P. notoginseng) is one of the most famous natural medicines and widely used to promote blood circulation in health care. However, the active component group of P.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
December 2024
School of Traditional Chinese Medicine, Binzhou Medical College Yantai 264003, China Institute of Basic Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences Beijing 100091, China.
This article explored the specific mechanism by which ginsenoside Rg_1 regulates cellular autophagy to attenuate hypoxia/reoxygenation(H/R) injury in HL-1 cardiomyocytes through the microRNA155(miR-155)/neurogenic gene Notch homologous protein 1(Notch1)/hairy and enhancer of split 1(Hes1) pathway. An HL-1 cell model with H/R injury was constructed, and ginsenoside Rg_1 and/or Notch1 inhibitor DAPT and miR-155 mimics were used to treat cells. Cell counting kit(CCK)-8 was used to detect the relative viability of HL-1 cells with H/R injury.
View Article and Find Full Text PDFActas Esp Psiquiatr
January 2025
Lab of Stem Cells and Tissue Engineering, Chongqing Medical University, 400016 Chongqing, China; Department of Histology and Embryology, Chongqing Medical University, 400016 Chongqing, China.
Background: Neural stem cells (NSCs) disrupt with aging, contributing to neurodegeneration. Ginsenoside Rg1 (Rg1), a compound found in Ginseng, is known for its anti-aging effects; however, its role in the progression of aging NSCs remains unclear. Therefore, this investigation explored the impact of Rg1 on the growth and maturation of aging NSC and elucidated its underlying molecular mechanisms.
View Article and Find Full Text PDFPharmacol Res
January 2025
TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China. Electronic address:
Bone marrow hematopoietic injury encompasses a range of pathological conditions that disrupt the normal function of the hematopoietic system, primarily through the impaired production and differentiation of bone marrow hematopoietic cells. Key pathogenic mechanisms include aging, radiation damage, chemical induction, infection and inflammation, and cross-talk with non-hematopoietic diseases. These pathological factors often lead to myelosuppression and myeloid skewing.
View Article and Find Full Text PDFBiomolecules
December 2024
Department of Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea.
Despite the rapid advancement of glycosidase biotechnology, ginsenoside-transforming rhamnosidases remain underexplored due to a lack of research. In this study, we aimed to bridge this gap by evaluating eight putative rhamnosidases for their ability to transform ginsenosides. Among them, a novel rhamnosidase (C118) from was identified as being efficient at hydrolyzing ginsenoside Re.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!