Antibodies are critical glycoproteins that bridge the innate and adaptive immune systems to provide protection against infection. The isotype/subclass of the antibody, the co-translational -glycosylation on the CH2 domain, and the remodeling of the -linked glycans during passage through the ER and Golgi are the known variables within the Fc domain that program antibody effector function. Through investigations of monoclonal therapeutics, it has been observed that addition or removal of specific monosaccharide residues from antibody -glycans can influence the potency of antibodies, highlighting the importance of thoroughly characterizing antibody -glycosylation. Although IgGs usually have a single -glycosylation site and are well studied, other antibody isotypes, IgA and IgM, that are the first responders in certain diseases, have two to five sites/monomer of antibody, and little is known about their -glycosylation. Here we employ a nLC-MS/MS method using stepped-energy higher energy collisional dissociation to characterize the -glycan repertoire and site occupancy of circulating serum antibodies. We simultaneously determined the site-specific -linked glycan repertoire for IgG1, IgG4, IgA1, IgA2, and IgM in individual healthy donors. Compared with IgG1, IgG4 displayed a higher relative abundance of G1S1F and a lower relative abundance of G1FB. IgA1 and IgA2 displayed mostly biantennary -glycans. IgA2 variants with the either serine (S93) or proline (P93) were detected. In digests of the sera from a subset of donors, we detected an unmodified peptide containing a proline residue at position 93; this substitution would strongly disfavor -glycosylation at N92. IgM sites N46, N209, and N272 displayed mostly complex glycans, whereas sites N279 and N439 displayed higher relative abundances of high-mannose glycoforms. This multi-isotype approach is a crucial step toward developing a platform to define disease-specific -glycan signatures for different isotypes to help tune antibodies to induce protection. Data are available via ProteomeXchange with identifier PXD010911.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6442369PMC
http://dx.doi.org/10.1074/mcp.RA118.001185DOI Listing

Publication Analysis

Top Keywords

antibody -glycosylation
8
igg1 igg4
8
iga1 iga2
8
displayed higher
8
higher relative
8
relative abundance
8
antibody
7
-glycosylation
6
multi-isotype glycoproteomic
4
glycoproteomic characterization
4

Similar Publications

Swine influenza virus (SIV) is a highly contagious pathogen that poses significant economic challenges to the swine industry and carries zoonotic potential, underscoring the need for vigilant surveillance. In this study, we performed a comprehensive genetic and molecular analysis of H3N2 SIV isolates obtained from 372 swine samples collected in Shandong Province, China. Phylogenetic analysis revealed two distinct genotypes.

View Article and Find Full Text PDF

Standardized workflow for multiplexed charge detection mass spectrometry on orbitrap analyzers.

Nat Protoc

January 2025

Departments of Molecular Biosciences, Chemistry and Chemical and Biological Engineering and the Feinberg School of Medicine, Northwestern University, Evanston, IL, USA.

Individual ion mass spectrometry (IMS) is the Orbitrap-based extension of the niche mass spectrometry technique known as charge detection mass spectrometry (CDMS). While traditional CDMS analysis is performed on in-house-built instruments such as the electrostatic linear ion trap, IMS extends CDMS analysis to Orbitrap analyzers, allowing charge detection analysis to be available to the scientific community at large. IMS simultaneously measures the mass-to-charge ratios (m/z) and charges (z) of hundreds to thousands of individual ions within one acquisition event, creating a spectral output directly into the mass domain without the need for further spectral deconvolution.

View Article and Find Full Text PDF

Acquisition of Fc-afucosylation of PfEMP1-specific IgG is age-dependent and associated with clinical protection against malaria.

Nat Commun

January 2025

Centre for translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.

Protective immunity to malaria depends on acquisition of parasite-specific antibodies, with Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) being one of the most important target antigens. The effector functions of PfEMP1-specific IgG include inhibition of infected erythrocyte (IE) sequestration and opsonization of IEs for cell-mediated destruction. IgG glycosylation modulates antibody functionality, with increased affinity to FcγRIIIa for IgG lacking fucose in the Fc region (Fc-afucosylation).

View Article and Find Full Text PDF

Plant glucanases, including potato glucanase, are pivotal in biological processes such as cell growth, development, and defense against pathogens. These enzymes hold substantial promises in biotechnological applications, especially genetic engineering for enhancing crop disease resistance and stress tolerance. In this study, from Solanum tuberosum, glycosyl hydrolases family 17 (GH-17) β-1,3-glucanase (Stglu) was cloned, expressed, characterized and its antifungal activity was evaluated.

View Article and Find Full Text PDF

-glycosylation plays a crucial role in defining the pharmacological properties and efficacy of therapeutic proteins, commonly referred to as biologics. The inherent complexity and lack of a templated process in glycosylation leads to a wide variation in glycan structures, posing significant challenges in achieving consistent glycan profiles on biologics. This study leverages omics technologies to predict which cell lines are likely to yield optimal glycosylation profiles, based on the existing knowledge of the functional impact of specific glycan structures on the pharmacokinetics, immunogenicity, and stability of therapeutic antibodies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!