Bacterial cellulose based superabsorbent production: A promising example for high value-added utilization of clay and biology resources.

Carbohydr Polym

Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, PR China; Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China; R&D Center of Xuyi Attapulgite Applied Technology, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Xuyi 211700, PR China. Electronic address:

Published: March 2019

Superabsorbent was synthesized from bacterial cellulose (BC) generated by in situ fermentation on bentonite inorganic gel (BIG). For BIG preparation, the effect of sodium agent's type and content, temperature and time of sodium-modification, and gelling agent's type and content on the viscosity of BIG were learned to optimize the synthesis process. For polymerization, the effect of different factors including ratio of monomer to substrate (modified BC from in situ fermentation), content of initiator and crosslinker, monomer neutralization degree, reaction temperature and time on the performance of composite (superabsorbent) synthesized were analyzed. Under optimal condition, the composite showed good water absorption, salts absorption, and water retention capacity. The original bentonite, sodium-based bentonite, BIG and composite structure was characterized by X-ray fluorescence (XRF), nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM) and thermogravimetric analysis (TGA), and the characterization partly explained the performance of water absorption and thermal stability of the composite. Overall, this study provides one method for superabsorbent synthesis from low-cost and natural resources.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2018.12.084DOI Listing

Publication Analysis

Top Keywords

bacterial cellulose
8
superabsorbent synthesized
8
situ fermentation
8
agent's type
8
type content
8
temperature time
8
water absorption
8
cellulose based
4
superabsorbent
4
based superabsorbent
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!