This work characterized mechanisms controlling cadmium (Cd) tolerance and accumulation in lettuce at both the physiological and genetic levels. These traits were evaluated in 18 Lactuca accessions representing a large genetic diversity. Cd tolerance and accumulation in roots and shoots as well as Cd translocation from roots to the shoot varied independently, and with a significant range of variation. Analyses of F1 progenies of crosses between cultivars with contrasted phenotypes showed that high tolerance to Cd, low Cd accumulation and low Cd root-shoot translocation were recessive traits. Results of analyses of F2 progenies of different crosses suggest that root Cd concentration and root-shoot Cd translocation were under a complex genetic determinism involving at least two loci. This work thus revealed that limiting both Cd accumulation and Cd root-shoot translocation in lettuce is possible and depends on recessive loci. Differences in the ability to accumulate Cd in roots in the long term could not be linked to differences in short-term Cd uptake into, or efflux from, roots. In contrast, the cultivar with the highest root-shoot Cd translocation was the same in the long term and in the short term, which suggests that this trait relies on processes that are implemented quickly (i.e. in less than three days) after the start of Cd exposure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plaphy.2019.01.011 | DOI Listing |
Plant Physiol Biochem
December 2024
College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China. Electronic address:
Moderate mowing of the shoot is an effective strategy for improving Pb-contaminated soil remediation using bermudagrass. However, the mechanisms by which mowing facilitates Pb uptake and accumulation remain insufficiently understood. Root radial transport is critical in efficient heavy metal uptake and translocation in plants and is influenced by root physiological-biochemical characteristics.
View Article and Find Full Text PDFEcotoxicol Environ Saf
December 2024
Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Changchun 130021, PR China; College of New Energy and Environment, Jilin University, Changchun 130021, PR China; Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University, Shenyang 110044, PR China. Electronic address:
The hyperaccumulating ecotype Sedum alfredii Hance is one of few Cd hyperaccumulators with Cd contents in leaves and stems up to 9000 mg/kg (dry weight, DW) and 6500 mg/kg (DW) respectively without displaying significant toxicity symptoms as reported in 2004. Numerous studies have been conducted to uncover the mystery of its hypertolerance and hyperaccumulation using high-throughput sequencing, biochemical and molecular techniques, mainly pointing to the root-microorganism interaction, restrained Cd storage in roots, efficient root-shoot translocation, effective cellular detoxification, and phloem-mediated metal remobilization. This also encourages studies on functional genes involved in metal transport, antioxidant, transcription regulation and stress response, providing candidates for genetic modification.
View Article and Find Full Text PDFPhysiol Plant
December 2024
Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China.
Clonal plants benefit from the ability to translocate resources among interconnected ramets to colonize stress habitats. Despite the fact that the physiological integration of clones may influence their general performance and competitiveness, we still lack an understanding of how integration alters the ability of clones to compete with their neighbours. In a greenhouse experiment, we investigated how clonal integration of a perennial herbaceous Cynodon dactylon, which originated from two flooding stress ecotypes, influenced the growth, functional traits, biomass allocation and relative competitiveness of their intraspecific and interspecific neighbours.
View Article and Find Full Text PDFBiol Trace Elem Res
October 2024
Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, Punjab, 147004, India.
The indigenous arbuscular mycorrhizal fungi (AMF) spores were isolated from rhizosphere soil associated with maize plants grown in natural selenium-impacted agricultural soils present in north-eastern region of Punjab, India (32°46' N, 74°46' N), with selenium concentration ranging from 2.1 to 6.1 mg kg dry weight, and their role in plant growth promotion, mitigation of selenium stress and phytochemical and antioxidant potential of host maize plants in natural seleniferous soil were examined.
View Article and Find Full Text PDFMolecules
May 2024
Department of Biology/Microbiology, South Dakota State University, Brookings, SD 57007, USA.
The symbiotic relationship between nitrogen-fixing cyanobacteria and plants offers a promising avenue for sustainable agricultural practices and environmental remediation. This review paper explores the molecular interactions between nitrogen-fixing cyanobacteria and nanoparticles, shedding light on their potential synergies in agricultural nanotechnology. Delving into the evolutionary history and specialized adaptations of cyanobacteria, this paper highlights their pivotal role in fixing atmospheric nitrogen, which is crucial for ecosystem productivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!