Eimeria spp., the causative agents of coccidiosis, are the most common protozoan pathogens of chickens. Infection with these parasites can result in poor development or death of animals leading to a devastating economic impact on poultry production. The establishment of transfection protocols for genetic manipulation of Eimeria species and stable expression of genes would help advance the biology of these parasites as well as establish these organisms as novel vaccine delivery vehicles. Here, we report the selection of the first stable transgenic E. necatrix population, EnHA1, consitutively expressing the EYFP reporter following transfection of the 2 generation merozoites with a linear DNA fragment harboring the EYFP reporter gene, the HA1 gene from the avian influenza virus H9N2 and the TgDHFR-TS selectable marker, which confers resistance to pyrimethamine. Transfected merozoites were inoculated into chickens via the cloacal route, and feces from 18 h to 72 h post inoculation were collected and subjected to subsequent serial passages, FACS sorting and pyrimethamine selection. A gradual increase in the number of EYFP-expressing sporulated oocysts was noticed with more than 90% EYFP + oocysts obtained after five passages. Immunofluorescence assay confirmed successful expression of the HA1 antigen in the EnHA1 population. The ability to genetically manipulate E. necatrix merozoites and express heterologous genes in this parasite will pave the way for possible use of this organism as a vaccine-delivery vehicle.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.molbiopara.2019.01.002 | DOI Listing |
PLoS One
December 2024
Institute of Cell Biology, University of Bern, Bern, Switzerland.
Malaria caused by Plasmodium parasites remains a large health burden. One approach to combat this disease involves vaccinating individuals with whole sporozoites that have been genetically modified to arrest their development at a specific stage in the liver by targeted gene deletion, resulting in a genetically attenuated parasite (GAP). Through a comprehensive phenotyping screen, we identified the hscb gene, encoding a putative iron-sulfur protein assembly chaperone, as crucial for liver stage development, making it a suitable candidate gene for GAP generation.
View Article and Find Full Text PDFMalar J
December 2024
Siriraj Integrative Center for Neglected Parasitic Diseases, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
Background: The eradication of Plasmodium vivax malaria is complicated due to the presence of hypnozoites, the hidden dormant form of the parasite that is present in the liver. Currently available drug regimens are effective at killing hypnozoites but cause side effects and are difficult to administer. Studies testing drugs for liver-stage malaria remain rare and mainly rely on the use of cancerous or immortalized hepatic cells and primary hepatocytes.
View Article and Find Full Text PDFEBioMedicine
November 2024
Burnet Institute, Melbourne, Australia; School of Environmental Sciences, Griffith University, Brisbane, Australia; QIMR Berghofer Medical Research Institute, Brisbane, Australia; Department of Infectious Diseases, University of Melbourne, Australia; Department of Microbiology and School of Translational Medicine, Monash University, Australia. Electronic address:
medRxiv
October 2024
G4 Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal.
NPJ Vaccines
October 2024
Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, 226031, India.
Liver-stage genetically attenuated malaria parasites (GAPs) are powerful immunogens that provide protection against sporozoite challenge. We previously generated two late liver-stage-arresting GAPs by deleting the stearoyl-CoA desaturase (Scd) or sporozoite conserved orthologous transcript 1 (Scot1) genes in Plasmodium berghei. Immunization with Scd or Scot1 GAP conferred complete protection against a sporozoite challenge.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!