A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Water absorption by deep eutectic solvents. | LitMetric

Water absorption by deep eutectic solvents.

Phys Chem Chem Phys

Department of Chemistry and Material Science, Langfang Normal University, Langfang 065000, Hebei, P. R. China.

Published: January 2019

Deep eutectic solvents (DESs) are one type of green solvents. Most of the DESs could absorb water from air. However, even a trace amount of water can affect the chemical structure and physical properties of DESs. To date, no study has been reported on the hygroscopicity of DESs. Consequently, in this study, a comprehensive investigation was performed on the capacity, kinetics, mechanism, and furthermore the dynamic process (by PCMW2D-COS IR spectra) of atmospheric water absorption from air by DESs. The results show that most DESs are highly hygroscopic. Surface absorption enhances the overall water absorption capacity by DESs in spite of decreasing the initial water absorption rate. In the beginning, the water absorption increases with an increase in the number of hydrophilic groups in DESs due to the retained DES nanostructure during this period. Therefore, DESs with more hydrophilic groups (ChCl:glucose than ChCl:xylitol) possess a higher water absorption initial rate. However, when the water absorption capacity is high, the hindrance from the H-bond strength from inner DESs needs to be overcome for the absorption of more water. In this case, DESs with stronger H-bonds (ChCl:glucose than ChCl:xylitol) have a lower steady-state water absorption capacity and an easier equilibrium.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8cp07383jDOI Listing

Publication Analysis

Top Keywords

water absorption
32
absorption capacity
12
water
11
dess
11
absorption
9
deep eutectic
8
eutectic solvents
8
solvents dess
8
rate water
8
hydrophilic groups
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!