The major drawbacks of standard plant fluorescence in situ hybridization (FISH) designed for double-stranded DNA probes include requirement for experimentally determined heat denaturation of chromosomes at high temperatures and at least overnight hybridization. Consequently, processing with chromosomal preparations may easily result in heat-induced deterioration of chromosomal structural details, is time-consuming, and involves the use of toxic formamide and formaldehyde. Here, I have described a simple and appealing non-toxic procedure with ethylene carbonate (EC)-a formamide-substituting solvent and double-stranded repetitive DNA probes. Applying EC as a component of the hybridization solution at 46 °C not only allowed successful overnight hybridization but also gave a possibility to reduce the hybridization time to 3 h, hence converting the technique into a 1-day procedure. Importantly, the EC-FISH tended to preserve well chromosome structural details, e.g., DAPI-positive bands, thus facilitating simultaneous FISH mapping and chromosome banding on the same slide. The procedure requires no formaldehyde and RNA-se treatment of chromosomes, and no heat denaturation of chromosomal DNA. The key condition is to obtain high-quality cytoplasm-free preparations. The method was reproducible in all the plants studied (Allium, Nigella, Tradescantia, Vicia), giving a species-specific signal pattern together with clear DAPI bands on chromosomes. The procedure described here is expected to give a positive stimulus for improving gene-mapping approaches in plants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6482133PMC
http://dx.doi.org/10.1007/s00709-019-01345-7DOI Listing

Publication Analysis

Top Keywords

ethylene carbonate
8
fluorescence situ
8
situ hybridization
8
repetitive dna
8
dna probes
8
heat denaturation
8
overnight hybridization
8
structural details
8
hybridization
6
simple non-toxic
4

Similar Publications

The recycling of spent lithium-ion batteries has become a common concern of the whole society, with a large number of studies on recycling management and recycling technology, but there is relatively little study on the pollution release during the recycling process. Pollution will restrict the healthy development of the recycling industry, which makes relevant research very significant. This paper monitored and analyzed the battery recycling pretreatment process in a formal factory, and studied the pollution characteristics of particulate matter, heavy metals, and microplastics under different treatment stages.

View Article and Find Full Text PDF

Study of Interfacial Reaction Mechanism of Silicon Anodes with Different Surfaces by Using the In Situ Spectroscopy Technique.

ACS Appl Mater Interfaces

January 2025

Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China.

The interfacial reaction of a silicon anode is very complex, which is closely related with the electrolyte components and surface elements' chemical status of the Si anode. It is crucial to elucidate the formation mechanism of the solid electrolyte interphase (SEI) on the silicon anode, which promotes the development of a stable SEI. However, the interface reaction mechanism on the silicon surface is closely related to the surface components.

View Article and Find Full Text PDF

This study investigates the structural and dynamic properties of ternary mixtures composed of NaPF, ethylene carbonate (EC), and the ionic liquid choline glycine (ChGly), with a focus on their potential as electrolytes for supercapacitors. The combination of NaPF-EC, known for its high ionic conductivity, with the biodegradable and environmentally friendly ChGly offers a promising approach to enhancing electrolyte performance. Through molecular simulations, we analyze how the inclusion of small concentrations of ChGly affects key properties such as density, cohesive energy, and ion mobility.

View Article and Find Full Text PDF

Ultrafast Lithium-Ion Transport Engineered by Nanoconfinement Effect.

Adv Mater

January 2025

School of Materials Science and Engineering, Beihang University, Beijing, 100191, China.

Article Synopsis
  • The study highlights the impressive lithium ionic conductivity achieved using graphene oxide laminar membranes, which significantly exceeds that of traditional lithium-ion electrolytes.
  • At 170 mS cm, the nanoconfined lithium electrolyte demonstrates extraordinary performance, maintaining useful conductivity even at extremely low temperatures.
  • The findings suggest that the enhanced ion transport is due to unique layer distribution effects in the nanochannels, potentially revolutionizing energy storage technologies by integrating these channels into lithium battery components.
View Article and Find Full Text PDF

Compared to traditional liquid electrolytes, solid electrolytes have received widespread attention due to their higher safety. In this work, a vinyl functionalized metal-organic framework porous material (MIL-101(Cr)-NH-Met, noted as MCN-M) is synthesized by postsynthetic modification. A novel three-dimensional hybrid gel composite solid electrolyte (GCSE-P/MCN-M) is successfully prepared via in situ gel reaction of a mixture containing multifunctional hybrid crosslinker (MCN-M), lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), ethylene carbonate (EC), diethylene glycol monomethyl ether methacrylate (EGM) and polyethylene (vinylidene fluoridee) (PVDF).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!