A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The phyllosphere indigenous microbiota of Brassica campestris L. change its diversity in responding to di-n-butyl phthalate pollution. | LitMetric

In this study, the effects of di-n-butyl phthalate (DBP) on the phyllosphere bacterial community of field mustard (Brassica campestris L.) at the five-leaf stage were investigated. The indigenous alpha-diversity of the phyllosphere bacteria was altered after spraying with different concentrations of DBP. Shannon diversity indices were significantly changed on day 5 after treatment at DBP concentrations > 400 mg L (P > 0.05). Nevertheless, the difference between treatment and control was not significant on day 9 after DBP treatment (P > 0.05). Exposure to DBP resulted in a decrease in Proteobacteria and Firmicutes, and an increase in Actinobacteria at all sampling intervals. These changes included significant increases in the relative abundance of Paracoccus and Rhodococcus, and significant decreases in that of Pseudomonas, Exiguobacterium, an unclassified genus of Pseudomonadaceae, and an unclassified genus of Enterobacteriaceae. This study provides new evidence for the possibility of using phyllosphere microbiota to remediate DBP contamination.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11274-019-2589-xDOI Listing

Publication Analysis

Top Keywords

brassica campestris
8
di-n-butyl phthalate
8
unclassified genus
8
dbp
6
phyllosphere
4
phyllosphere indigenous
4
indigenous microbiota
4
microbiota brassica
4
campestris change
4
change diversity
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!