Quantum 3D thermal imaging at the micro-nanoscale.

Nanoscale

State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.

Published: January 2019

Real-time and accurate measurement of three-dimensional (3D) temperature field gradient maps of cells and tissues would provide an effective experimental method for analyzing the coupled correlation between metabolism and heat, as well as exploring the thermodynamic properties of nanoparticles under complex environments. In this work, a new principle of quantum 3D thermal imaging is proposed. The photoluminescence principle of quantum dots is expounded and CdTe QDs are prepared by aqueous phase synthesis. Fluorescence spectral characteristics of QDs at different temperatures are studied. The optimized algorithm of the optical spot double helix point spread function is proposed to improve the imaging, where optimized light energy increased by 27.36%. The design scheme of a quantum 3D thermal imaging system is presented. The measurement range is (-8 mm, +8 mm). The temperature is calculated according to the temperature-heat curve of quantum dots. The double helix point spread function has converted the defocus distance of QDs into the rotation angle of the double optical spot, thereby determining its position. The experimental results reveal that real-time 3D tracking and temperature measurements of quantum dots at the micro-nanoscale are achieved. Overall, the proposed nano-scale 3D quantum thermal imaging system with high-resolution may provide a new research direction and exploration of many frontier fields.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8nr09096cDOI Listing

Publication Analysis

Top Keywords

quantum thermal
16
thermal imaging
16
quantum dots
12
principle quantum
8
optical spot
8
double helix
8
helix point
8
point spread
8
spread function
8
imaging system
8

Similar Publications

Topological semimetals have recently garnered widespread interest in the quantum materials research community due to their symmetry-protected surface states with dissipationless transport which have potential applications in next-generation low-power electronic devices. One such material, [Formula: see text], exhibits Dirac nodal arcs and although the topological properties of single crystals have been investigated, there have been no reports in crystalline thin film geometry. We examined the growth of [Formula: see text] heterostructures on a range of single crystals by optimizing the electron beam evaporation of Pt and Sn and studied the effect of vacuum thermal annealing on phase and crystallinity.

View Article and Find Full Text PDF

High-Performance Circular Polarization Multiple-Resonance TADF Molecules with Enhanced Long-Range Charge Transfer Based on Chiral Paracyclophane.

J Phys Chem Lett

December 2024

State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China.

Circularly polarized multiple-resonance thermally activated delayed fluorescence (CP-MR-TADF) materials have received widespread attention in recent years, but it remains a formidable challenge to design high-performance CP-MR-TADF emitters concurrently exhibiting high quantum efficiency, narrowband emission, and high dissymmetry factor (). Here, we perform an in-depth theoretical investigation on the CP-MR-TADF materials based on [2.2] paracyclophane (pCp) derivatives.

View Article and Find Full Text PDF

The hot carrier multi-junction solar cell (HCMJC) is an advanced-concept solar cell with a theoretical efficiency greater than 65%. It combines the advantages of hot carrier solar cells and multi-junction solar cells with higher power conversion efficiency (PCE). The thermalization coefficient () has been shown to slow down by an order of magnitude in low-dimensional structures, which will significantly improve PCE.

View Article and Find Full Text PDF

Creating and Deleting a Single Dipolar Skyrmion by Surface Spin Twists.

Nano Lett

December 2024

Anhui Province Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China.

We report deterministic operations on single dipolar skyrmions confined in nanostructured cuboids by using in-plane currents. We achieve highly reversible writing and deleting of skyrmions in a simple cuboid without any artificial defects or pinning sites. The current-induced creation of skyrmions is well-understood through the spin-transfer torque acting on surface spin twists of the spontaneous 3D ferromagnetic state, caused by the magnetic dipole-dipole interaction of the uniaxial FeSn magnet with a low-quality factor.

View Article and Find Full Text PDF

investigations on hydrodynamic phonon transport: From diffusion to convection.

Int J Heat Mass Transf

March 2024

Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095, United States of America.

In classical theory, heat conduction in solids is regarded as a diffusion process driven by a temperature gradient, whereas fluid transport is understood as convection process involving the bulk motion of the liquid or gas. In the framework of theory, which is directly built upon quantum mechanics without relying on measured parameters or phenomenological models, we observed and investigated the fluid-like convective transport of energy carriers in solid heat conduction. Thermal transport, carried by phonons, is simulated in graphite by solving the Boltzmann transport equation using a Monte Carlo algorithm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!