The rationale for the structural and mechanistic basis of a tetrahydroisoquinoline (THIQ) based series of CXCR4 antagonists is presented. Using the previously reported crystal structures which reveal two distinct binding sites of CXCR4 defined as the small molecule (IT1t or minor) binding pocket and peptide (CVX15 or major) binding pocket, we hypothesized our THIQ small molecule series could bind like either molecule in these respective receptor configurations (IT1t versus CVX15 based poses). To this end, a thorough investigation was performed through a combination of receptor mutation studies, medicinal chemistry, biological testing, conformational analysis, and flexible docking. Our findings showed that the CVX15 peptide-based CXCR4 receptor complexes (red pose) were consistently favored over the small molecule IT1t based CXCR4 receptor configurations (blue pose) to correctly explain the computational and mutational studies as well as key structural components of activity for these small molecules.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6331156 | PMC |
http://dx.doi.org/10.1021/acsmedchemlett.8b00441 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China.
Theranostics of nuclear medicine refers to the combination of radionuclide imaging and internal irradiation therapy, which is currently a research hotspot and an important direction for the future development of nuclear medicine. Radiopharmaceutical is a vital component of nuclear medicine and serves as one of the fundamental pillars of molecular imaging and precision medicine. At present, a variety of radiopharmaceuticals have been developed for various targets such as fibroblast activation protein (FAP), prostate-specific membrane antigen (PSMA), somatostatin receptor 2 (SSTR2), C-X-C motif chemokine receptor 4 (CXCR4), human epidermal growth factor-2 (HER2), and integrin αvβ, and some of them have been successfully applied in clinical practice.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Anatomy, Cellular and Molecular Research Group, Faculty of Medicine, Masaryk University, Kamenice 3, CZ-625 00 Brno, Czech Republic.
CXCL12 and CXCR4 proteins and mRNAs were monitored in the dorsal root ganglia (DRGs) of lumbar (L4-L5) and cervical (C7-C8) spinal segments of naïve rats, rats subjected to sham operation, and those undergoing unilateral complete sciatic nerve transection (CSNT) on post-operation day 7 (POD7). Immunohistochemical, Western blot, and RT-PCR analyses revealed bilaterally increased levels of CXCR4 protein and mRNA in both lumbar and cervical DRG neurons after CSNT. Similarly, CXCL12 protein levels increased, and CXCL12 mRNA was upregulated primarily in lumbar DRGs ipsilateral to the nerve lesion.
View Article and Find Full Text PDFChemMedChem
January 2025
Universitatsspital Basel, Radiopharmazeutische Chemie, Petersgraben 4, 4031, Basel, SWITZERLAND.
The C-X-C chemokine receptor 4 (CXCR4) is highly upregulated in most cancers, making it an ideal target for delivering radiation therapy to tumors. We previously demonstrated the feasibility of targeting CXCR4 in vivo using a radiolabeled derivative of EPI-X4, an endogenous CXCR4 antagonist, named DOTA-K-JM#173. However, this derivative showed undesirable accumulation in the kidneys, which would limit its clinical use.
View Article and Find Full Text PDFJ Cell Mol Med
January 2025
Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China.
Notably, the C-X-C Motif Chemokine Ligand 12/C-X-C Chemokine Receptor Type 4 (CXCL12/CXCR4) signalling pathway's activation is markedly increased in a mouse model of abdominal aortic aneurysms (AAA). Nonetheless, the precise contribution of this pathway to AAA development remains to be elucidated. The AAA mouse model was induced by local incubation with elastase and oral administration of β-aminopropionitrile.
View Article and Find Full Text PDFTheranostics
January 2025
Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany.
To establish the extent, distribution and frequency of in-vivo vessel wall [Ga]Ga-PentixaFor uptake and to determine its relationship with calcified atherosclerotic plaque burden (CAP) and cardiovascular risk factors (CVRF). 65 oncological patients undergoing [Ga]Ga-PentixaFor PET/CT were assessed. Radiotracer uptake (target-to-background ratio [TBR]) and CAP burden (including number of CAP sites, calcification circumference and thickness) in seven major vessel segments per patient were determined.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!